GEOLOGICAL SURVEY OF CANADA OPEN FILE 8706 The ups and downs of the Canadian Shield: 3 ‒ additional apatite fission-track analyses from the Musselwhite, Roberto, Meadowbank and Raglan mines, Ontario, Quebec, and Nunavut N. Pinet and K. McDannell 2020 GEOLOGICAL SURVEY OF CANADA OPEN FILE 8706 The ups and downs of the Canadian Shield: 3 ‒ additional apatite fission-track analyses from the Musselwhite, Roberto, Meadowbank and Raglan mines, Ontario, Quebec, and Nunavut N. Pinet1 and K. McDannell2 1Geological Survey of Canada, 490, rue de la Couronne, Québec, Quebec G1K 9A9 2Geological Survey of Canada, 3303 33rd Street Northwest, Calgary, Alberta T2L 2A7 2020 © Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020 Information contained in this publication or product may be reproduced, in part or in whole, and by any means, for personal or public non-commercial purposes, without charge or further permission, unless otherwise specified. You are asked to: • exercise due diligence in ensuring the accuracy of the materials reproduced; • indicate the complete title of the materials reproduced, and the name of the author organization; and • indicate that the reproduction is a copy of an official work that is published by Natural Resources Canada (NRCan) and that the reproduction has not been produced in affiliation with, or with the endorsement of, NRCan. Commercial reproduction and distribution is prohibited except with written permission from NRCan. For more information, contact NRCan at nrcan.copyrightdroitdauteur.rncan@canada.ca. Permanent link: https://doi.org/10.4095/321845 This publication is available for free download through GEOSCAN (https://geoscan.nrcan.gc.ca/). Recommended citation Pinet, N., and McDannell, K., 2020. The ups and downs of the Canadian Shield: 3 ‒ additional apatite fission-track analyses from the Musselwhite, Roberto, Meadowbank and Raglan mines, Ontario, Quebec, and Nunavut; Geological Survey of Canada, Open File 8706, 51 p. https://doi.org/10.4095/321845 Publications in this series have not been edited; they are released as submitted by the author. mailto:nrcan.copyrightdroitdauteur.rncan@canada.ca https://geoscan.nrcan.gc.ca/ https://doi.org/10.4095/xxxxxxx 1 The ups and downs of the Canadian Shield: 3‒ Additional apatite fission-track analyses from the Musselwhite, Roberto, Meadowbank and Raglan mines Nicolas Pinet (1) and Kalin McDannell (2) (1) Natural Resources Canada, Geological Survey of Canada, 490 rue de la Couronne, Québec, Quebec, G1K 9A9 (2) Natural Resources Canada, Geological Survey of Canada, 3303 33 St. NW, Calgary, AB, T2L 2A7 Abstract: The low-temperature (ca 120-60°C) thermal history of nine samples from four mines was investigated using the apatite fission-track (AFT) method. Analyses correspond to four samples from the Musselwhite mine over a 275 m vertical interval, three from the Roberto mine over a 382 m vertical interval and one sample from both the Meadowbank and Raglan mines. AFT inverse modelling using both HeFTy and QTQt softwares yield concordant results and indicate that a Phanerozoic heating episode was minor (< 20°C) or non-existent over the Musselwhite mine. This contrasts with previous AFT studies that document significant heating (> 20°C) due to sedimentary burial and indicates that the Canadian Shield did not react as a single entity during the last billion years. The thermal history of samples from the Roberto and Meadowbank mines are less constrained due to the lack of ‘high’ (> 120°C) temperature constraints. The sample from the Raglan mine yields the youngest central age among the samples reported in this study. 2 1. Introduction Cratons formed of Archean to Proterozoic age rocks survived multiple tectonic cycles and testify to a relative stability over periods of hundreds of million years, a behaviour related to some of the characteristics of the cratonic lithosphere (high thickness and stiffness, low temperature). However, the ‘stability paradigm’ may mask the complexity in the post-orogenic evolution of cratons. The tools available to study the dynamics of cratons over tens of millions to billions of years are fragmentary and yield, at best, an incomplete picture of their evolution. The sedimentary record preserved in intracratonic basins and platforms constrain the early subsidence history but the late stages of sediment deposition is generally poorly known as a significant portion of the succession may have been removed by erosion. Xenoliths and magmatism may provide some hints on the evolution of cratons but their significance at the craton scale is difficult to determine. Most geophysical observations, including seismic tomography, provide present-day snapshots, but they must be interpreted with caution when integrated in evolution models over time frames characteristic of cratons. Numerical models are increasingly used to discuss craton stability, but their results need to be tested against independent datasets. Apatite fission-track (AFT) analysis is a well-established thermochronological method that constrains the thermal history at relatively low-temperatures (typically < 120°C). Despite the strong theoretical and methodological backgrounds of the AFT method, its application to relatively stable continental interiors presents some challenges. This is the case of the Canadian Shield which is characterized by slow exhumation rates during the Phanerozoic, low geothermal gradients and an incomplete geological record. Here we report AFT data for nine samples from the Musselwhite, Roberto, Meadowbank and Raglan mines (Fig. 1) and provide preliminary interpretations. These datasets complement AFT analyses from the Hudson Bay regions reported in Pinet et al. (2016), Pinet (2018) and McDannell et al. (in press). This open file also aims to discuss modeling strategies and scenarios in more detail than it is usually possible in scientific journals and to make the 3 data (including single grain analysis, track length measurements and apatite geochemistry) available. Figure 1: Location of the Musselwhite, Roberto, Meadowbank and Raglan mines. Pale yellow circles (surface samples) and squares (drill hole/mine samples) correspond to available AFT analyses compiled by Pinet and Brake (2018). 2. The apatite fission-track method Apatite fission-track (AFT) analysis has been widely used during the past decades to constrain the low-temperature thermal histories of many areas around the world, in different geological settings. Isotopic dating methods are based on the ratio of parent and daughter isotopes, although for AFT analysis the daughter product is not another isotope but rather a trail of physical damage to the crystal lattice resulting from spontaneous fission of 238U. 4 Fission-tracks form at similar initial lengths continuously over time, at a rate dependent upon only uranium concentration. The fission-tracks are shortened in the partial annealing zone (PAZ) that corresponds to temperatures between ~60°C and ~120°C (>200°C for the most ‘retentive’ apatite). At temperatures lower than the PAZ, fission-tracks are still shortened but at much lower rates, whereas at higher temperatures, tracks are completely erased (annealed). During exhumation, earlier-formed tracks will tend to be shorter than later-formed ones, as they will have more time to anneal and may have experienced higher temperatures. The change in length of AFT varies among apatite crystals and two proxies are commonly used to estimate the kinetics of the annealing process: Dpar, the arithmetic mean of fission-track etch pit lengths measured parallel to the crystallographic c-axis (in µm; Burtner et al., 1994) and the chlorine content (in weight %; Green et al., 1985). In this study we prefer to use the kinetic parameter rmr0 which characterizes the annealing behavior of apatite based on the multi-compositional calculation proposed by Carlson et al. (1999). Interpretation of AFT data is based on the combined analysis of the fission-track age, track length distribution and a kinetic parameter. Fission-track ages do not usually indicate the timing of cooling through a specific temperature (except for nearly instantaneous cooling, such as in volcanic settings), but instead represent the integrated thermal history of studied samples. Excellent reviews on the AFT method are found in Gallagher et al. (1998), Gleadow et al. (2002), Donelick et al. (2005), Ketcham (2005) Green and Duddy (2012) and in the recent textbook dedicated to fission-track thermochronology and its application to geology (Malusà and Fitzgerald, 2019). In this study we report inverse modelling results using two popular thermal history modelling programs: HeFTy (Ketcham, 2005 and 2013) and QTQt (Gallagher, 2012). These programs use the same physical principles but different inverse modelling approaches (see Vermeesch and Tian, 2014, Gallagher and Ketcham, 2018 and McDannell et al., in press for a review and discussion). HeFTy employs a non-directed random Monte Carlo search algorithm and each time-temperature path is compared to measured values using p-value thresholds as goodness-of-fit objective function criteria for both AFT ages and track length distribution. In QTQt, the inversion scheme implements a Bayesian reversible jump Markov chain Monte Carlo 5 (MCMC) routine in which time-temperature points are iteratively sampled to construct and refine a continuous thermal history by linear interpolation between sampled points that provide the best fit to the observed data. The Bayesian approach naturally prefers simpler thermal history models (which provide an adequate fit to the observations) rather than more complex histories (that may/may not provide better fits). Multiple samples with constant geometrical relationships through time (as a vertical profile) can be modelled together in QTQt. 3. AFT dataset The AFT analyses reported here were conducted at Dalhousie University (Canada) using the external detector method. All rock samples were broken into small pieces using a hydraulic splitter and jaw crusher, then ground in a disc mill and sieved to fragments <500 µm. The sieved material was then run over a Wifley mineral separation table to produce an initial heavy mineral concentrate, which was then treated with conventional magnetic and heavy liquid techniques to produce an apatite-bearing fraction. Apatite aliquots were mounted in araldite epoxy on glass slides, ground and polished to an optical finish to expose internal grain surfaces. Polished mounts were etched in 5M HNO3 for 20 seconds at 21°C to reveal the fossil tracks that intersect the polished apatite grain surface. In the external detector method, the 238U parent concentration is determined by using fission-track density induced on a uranium free external detector (muscovite slab) from the fission of 235U through irradiation with a flux of slow thermal neutrons (see Donelick et al., 2005 for details). Samples and CN5 glass standards were irradiated with thermal neutrons. After irradiation, the low-U muscovite detectors that covered apatite grain mounts and glass dosimeter were etched in 5.5 M HNO3 for 20 s at 21˚C to reveal induced fission-tracks. Results for the 9 samples analyzed are summarized on Table 1. It should be noted that parameters required for the zeta calibration (zeta and uncertainty in zeta, specific to each analyst) vary among the samples (Table 1). 6 Sa m pl e N o Li th ol og y Ag e M in e Lo ca tio n Lo ng itu de La tit ud e De pt h or el ev at io n (m ) N b of m ou nt s N b of gr ai ns ρs x 1 06 cm -2 (N s) ρi x 1 06 cm -2 (N i) ρd x 1 06 cm - 2 (N d) P( X2 ) C en tr al A ge ± 1σ ( Μ α ) U (p pm ) Co nf in ed tr ac k le ng th s M TL (µ m ± ST D) Dp ar s (µ m ) Dp ar er ro r (µ m ) 20 16 D AT AS ET M W 12 -U G- 10 5 iro n fo rm at io n PK M us se lw hi te M in e Le ve l 7 70 - s ec tio n 11 78 0 -9 0. 36 63 3 52 .6 11 59 -7 70 1 20 2. 63 2 (9 10 ) 1. 18 0 (4 08 ) 1. 26 (5 26 9) 81 .8 49 0. 49 ± 3 1. 79 12 .1 5 11 11 .1 2 ± 0. 57 2. 9 1. 39 M W 12 -U G- 02 3 iro n fo rm at io n PK M us se lw hi te M in e le ve l 9 20 -s ec tio n 12 15 0 -9 0. 36 63 3 52 .6 11 59 -9 20 1 22 1. 65 1 (9 15 ) 0. 69 7 (3 86 ) 1. 23 (5 26 9) 99 .8 50 7. 23 ± 3 3. 39 7. 51 11 11 .8 4 ± 0. 85 2. 47 1. 22 M W 13 -U G- 01 0 iro n fo rm at io n PK M us se lw hi te M in e le ve l 1 02 0 - s ec tio n 12 73 0 -9 0. 36 63 3 52 .6 11 59 -1 02 0 1 21 2. 25 1 (1 62 9) 1. 06 0 (7 67 ) 1. 27 (5 26 9) 36 .3 47 1. 48 ± 2 5. 04 13 .7 2 85 11 .7 7 ± 0. 24 2. 66 1. 22 M W 13 -U G- 01 8 iro n fo rm at io n PK M us se lw hi te M in e le ve l 1 04 5- se ct io n 12 89 0 -9 0. 36 63 3 52 .6 11 59 -1 04 5 1 19 2. 29 1 (1 88 2) 1. 02 2 (8 40 ) 1. 28 (5 26 9) 46 .9 50 7. 92 ± 2 9. 88 9. 11 18 11 .8 3 ± 0. 59 2. 53 1. 11 RA GL AN 2 ga bb ro PK Ra gl an M in e Zo ne 5 -9 ; h ol e 71 8- 34 03 -7 3. 67 72 5 61 .6 87 6 -6 30 1 27 0. 27 1 (1 27 ) 0. 22 4 (1 05 ) 1. 31 (5 26 9) 47 .2 28 0. 82 ± 3 7. 73 2. 3 1 14 .1 2. 34 0. 98 20 17 D AT AS ET EO C- 14 -0 05 gr ey w ac ke PK Ro be rt o M in e DE C_ RO BE RT O -7 6. 08 65 8 52 .6 99 31 22 0. 0 3 12 1. 04 60 (6 81 ) 0. 70 04 (4 56 ) 1 .2 06 4 (4 35 1) 49 .6 32 5. 50 ± 2 0. 77 9 6 12 .2 1 ± 1. 15 2. 36 0. 12 EU G- 15 -0 18 A gr ey w ac ke PK Ro be rt o M in e M in e le ve l 2 30 -7 6. 08 67 9 52 .7 00 57 -5 .0 3 12 4. 04 73 (5 27 ) 2. 25 02 (2 93 ) 1 .2 17 1 (4 35 1) 54 .7 0 39 3. 40 ± 29 .7 6 25 12 8 12 .4 9 ± 1. 85 2. 4 0. 15 EU G- 14 -2 0C gr ey w ac ke PK Ro be rt o M in e M in e le ve l 3 80 _A M N 35 7 -7 6. 08 62 3 52 .7 00 91 -1 62 .0 3 24 0. 94 66 (5 50 ) 0. 62 99 (3 66 )1 .1 95 6 (4 35 1) 33 .2 32 4. 62 ± 2 2. 87 7 24 11 .9 2 ± 2. 59 2. 28 0. 23 PK M BK -1 2- 49 3 di or ite PK M ea do w ba nk M in e O pe n pi t -9 6. 07 22 9 65 .0 22 44 3 29 0. 53 00 (1 18 5) 0. 25 85 (5 78 ) 1 .2 20 4 (4 35 1) 99 .2 44 7. 73 ± 2 4. 46 27 32 12 .2 7 ± 1. 64 2. 42 0. 15 20 16 D AT AS ET 20 17 D AT AS ET Ze ta 36 2. 7 37 0. 6 Ze ta e rr or 7. 8 5 N D 52 69 43 51 20 16 A N D 20 17 D AT AS ET S De ca y k 1. 55 E -1 0 Rh oD (v ar ie s f or e ac h sa m pl e) Ar ea 8. 98 50 65 E -7 cm 2 N s nu m be r o f s po nt an eo us tr ac ks co un te d ρ s de ns ity o f s po nt an eo us tr ac ks N i nu m be r o f i nd uc ed tr ac ks co un te d ρ i de ns ity o f i nd uc ed tr ac ks o n m ic a N d nu m be r o f t ra ck s c ou nt ed in th e do si m et ry g la ss ρ d de ns ity o f t ra ck s o n do si m et ry g la ss M TL M ea n Tr ac k Le ng th X2 te st (P > 5 % ) i s a p as s o n th e X2 te st Dp ar fo ur D pa r m ea su re m en ts w er e av er ag ed fr om e ac h an al ys ed cr ys ta l w he n av ai la bl e; w he n se ve ra l t ra ck le ng th s w er e ta ke n in th e sa m e gr ai n, fo ur D pa r m ea su re m en ts w er e m ad e to o. T he D pa r v al ue s a re te m ea n of th os e 4 Dp ar v al ue s. U av er ag e U co nc en tr at io n (p pm ) o f g ra in s u se d fo r a ge ca lc ul at io n PK Pr ec am br ia n Ta bl e 1: S um m ar y of A FT re su lts 7 4. Inverse Modeling- Musselwhite Mine 4a- AFT Results The Musselwhite mine is a gold deposit hosted in a polydeformed amphibolite facies banded iron-formation of the Mesoarchean North Caribou greenstone belt, northwestern Superior province (Fig. 1; Oswald et al., 2015). The four samples analyzed belong to a strongly folded chert-grunerite ± magnetite facies iron formation (Fig. 2A). Figure 2: Musselwhite Mine. A) Deformed chert-grunerite iron formation. Sample MW12-UG-023; B) AFT Age versus depth diagram; C) Chlorine content of apatite grains from the four samples; D) Uranium content versus single-grain AFT age for the four samples. Samples from the Musselwhite mine were collected over a vertical interval of 275 m at depths between 770 m and 1045 m. For each sample, the age determination is based on 19 to 22 apatite grains and track length data include between 11 and 85 measurements. AFT ages are within age uncertainties and varies between 471.5 ± 25.0 and 507.9 ± 29.9 Ma. The expected relationship between AFT age and elevation (with the deepest sample expected to 8 yield the youngest age) is not documented, probably due to the relatively short vertical interval (Fig. 2B). Electron microprobe analyses of apatites indicate near end-member fluorapatite, with Chlorine content (Cl wt%) ranging from 0.002 to 0.051% (Fig. 2C; average = 0.012%). Apatite grains with such low values of Cl wt% usually anneal more readily relative to those with higher Cl wt% (> 1-2%), (Donelick et al., 2005). No clear relationship exists between etch pit diameter (Dpar) and Cl content/rmr0. AFT ages tend to decrease with increasing single grain Uranium content (Fig. 2D). A similar relationship has been documented by McDannell et al. (2019a) for several samples from the Canadian Shield and interpreted as related to α-radiation enhanced fission-track annealing, a mechanism that may be significant in slowly-cooled terranes. 4b- Basic HeFTy model – sample MW13-UG-010 Among the four samples, sample MW13-UG-010 shows the lowest AFT age uncertainty and, more importantly, the greatest number of measured track lengths. It is thus considered as the most ‘robust’ sample and will be used as the reference sample for modelling. Sample MW13-UG-010 yielded a central AFT age of 471.5 ± 25.0 Ma. Oldest and youngest single grain ages are 668.2 -210/+298 and 370.5 -102/+138 Ma respectively (Fig. 3A). The mean track length (non-projected) is 11.77 ± 0.24 µm. C-axis projected horizontal track lengths range between 10.69 and 16.54 µm and show an unimodal distribution. All apatite grains analysed are compositionally homogeneous with chlorine content ≤ 0.03%. Mean Dpar values (average of four measurements by crystals when available) average 2.66 µm. No relationship exists between AFT age and Chlorine content or Dpar suggesting that the annealing kinetics of single grains in the sample are homogeneous. 9 The basic inverse model includes only two constraints: 1) a temperature of 180 ± 20°C at 975 ± 25 Ma based on the 40Ar/39Ar results from a sample located at approximately 40 km (McDannell et al., 2018); 2) a present-day temperature of 23 ± 5°C (depth = 1020 m). The time- temperature paths between 1 Ga and present-day include 25 segments, are qualified as ‘intermediate’ (no sudden changes) and are characterized by cooling rates < 2°C (typical of cratonic settings). Inverse modelling stops when 50 good paths have been found. Figure 3: Sample MW13-UG-010. A) Radial plot; On this diagram, more precise fission track ages plot further from the origin along the x-axis (precision). Data plotted using Radial Plotter software (Vermeesch, 2009). B) Inverse model results with the ‘basic’ scenario; The best fit path is shown in dark blue and the weighted mean path in black. Modeling results indicate that both the AFT age (goodness of fit = 0.92), track length distribution (goodness of fit = 0.99) and oldest predicted single grain age (673 Ma) can be adequately fit with a continuous cooling with rates decreasing at ca 600 Ma (Fig. 3B). 4c- HeFTy model – composite sample MW13-UG-010+MW13-UG-018+MW12-UG-023 The low number of measured track lengths in three samples (MW13-UG-010, MW13- UG-018 and MW12-UG-023) add significant uncertainty to inverse models. Rather than model these samples, we combined the three samples located at 920 to 1045 m depth in a single composite sample (Fig. 4A; 62 apatite grains; 114 measured fission-tracks). The present-day 10 difference in temperature between these sample is less than 2° C and is not expected to play a significant role during inverse modelling. The basic model includes the same two constraints as sample MW13-UG-010 (see section 4b above). Modeling results indicate that both the AFT age (goodness of fit = 0.93) and the track length distribution (goodness of fit = 0.87) can be adequately fit with a nearly monotonic cooling (Fig. 4B). The number of grains is high enough to investigate the potential role of grain chemistry. In the case of the Musselwhite composite sample, Cl is the best parameter to distinguished two populations (Fig. 4C), even if it should be noted that both are close to the fluorapatite end- member. Distinguishing these populations in the basic model does not significantly modify the results (Fig. 4D). An alternative model aims to ‘force’ some increase in temperature during the Paleozoic (Figs 4E and 4F). This scenario is a working hypothesis aiming to test an alternative thermal history and, indirectly, provide a qualitative evaluation of the basic model. In the ‘forced’ heating model, a time-temperature constraint is defined at 450 Ma (the age of the base of the sedimentary succession regionally) with temperatures ± 30°C the weighted mean path of the basic model. A loosely defined period of increase in temperature (potentially linked with subsidence) is imposed between 445 and 350 Ma. The timeframe (Late Ordovician-Early Devonian) corresponds to the most probable period for initial sedimentary burial (if any) based on regional considerations (Pinet et al., 2013; Lavoie et al., 2015). Modelling results indicate that AFT age (goodness of fit = 0.92) and track length distribution (goodness of fit = 1.00) can also be fit with this scenario. Both the best fit path and the weighted mean path show only moderate increase in temperature in the 445-350 Ma time interval (<8° C in both cases), even if higher temperatures were ‘allowed’ by the model. In other words, results from the ‘forced’ heating scenario are only slightly different from the basic model and indicate that the increase in temperature during the Paleozoic, if any, was minor. 11 Figure 4: Composite sample MW12-UG-010 + MW-UG-018 + MW12-UG-023. A) Radial plot; On this diagram, more precise fission-track ages plot further from the origin along the x-axis (precision). Data plotted using Radial Plotter software (Vermeesch, 2009). B) Inverse model results with the ‘basic’ scenario; C) Cl versus AFT age diagram used for distinguishing apatite populations; D) Inverse model results with the ‘basic’ scenario and two apatite populations. E) and F) Inverse model results with the scenario ‘imposing’ an heating episode during the Paleozoic. In B), D) and E) Good and acceptable paths are in magenta and grey respectively. The best fit path is shown in dark blue and the weighted mean path in black. In F) peak heating points within each of the T-t constrain boxes are indicated in magenta (good fits) and grey (acceptable fits) 12 4d - QTQt model – vertical profile AFT results from the four Musselwhite mine samples have been kept separate and modeled as a vertical profile using the QTQt software. The temperature constraint at 1000-950 Ma is the same as the HeFTy models. Maximum heating/cooling rates were fixed at 5°C. The model was run for over 300,000 iterations and showed good convergence. The expected model (the preferred single model, a weighted mean model where the weighting is provided by the posterior probability) indicates that a continuous cooling accounts for the data (Fig. 5). This expected model shows a significant decrease in cooling rates at ~ 550 Ma, in close agreement with HeFTy models. The 95% credible intervals reflects the uncertainty of the model and indicate that the possibility of a slight increase in temperature between 480 and 350 Ma (green arrow on Fig. 5) cannot be ruled out. This time interval includes the period of sedimentation recorded in the Hudson Bay Basin. Figure 5: QTQt inverse modeling results for the four samples from the Musselwhite Mine. The green dotted arrow illustrate a possible slight increase in temperature during the Paleozoic. 13 5. Inverse modelling, Roberto mine 5a- AFT results The Roberto mine is a gold deposit hosted in polydeformed upper-greenschist to amphibolite facies metagreywacke (Low Formation) in the La Grande subprovince close to the contact with the amphibolite to granulite-facies Opinaca subprovince (Fontaine et al., 2015). The three samples analyzed are fine- to coarse grained deformed greywackes (Figs. 6A and 6B) Samples from the Roberto mine were collected over a vertical interval of 382 m from surface (220 m) to a depth of 162 m. For each sample, the age determination is based on 12 to 24 apatite grains and track length data include between 6 and 128 measurements. AFT central ages vary between 324.6 ± 22.9 and 393.4 ± 29.8 Ma, thus ages are significantly younger than those from the Musselwhite mine. The expected relationship between the AFT age and the elevation (with the deepest sample expected to yield the youngest age) is not documented, probably due to the relatively short vertical interval. Electron microprobe analyses of apatites indicate near end-member fluorapatite, with Chlorine content (Cl wt%) ranging from 0.000 to 0.019% (Fig. 6C; average = 0.005%). Apatite grains with such low values of Cl wt% usually anneal more readily relative to those with higher Cl wt% (> 1-2%), (Donelick et al., 2005). No clear relationship exists between etch pits diameter (Dpar) and Chlorine content. Contrary to the Musselwhite Mine, there is no clear decrease of AFT ages with increasing single grain Uranium content (Fig. 6D). 14 Figure 6: Roberto mine. A) and B) fine- and coarse-grained greywackes. Samples EOC-14-005 and EUG- 14-20C; C) Chlorine content of apatite grains from the three samples; D) Uranium content versus single-grain AFT age for the three samples. 5b- HeFTy models None of the three samples from the Roberto Mine have enough single grain age data AND measured fission-track lengths to be adequately modelled. To overcome this issue, we combined the sample with the highest number of apatite grain (N=24; EUG-14-20C) with the sample with the highest number of measured tracks (N= 128; EUG-14-018A) in a single composite sample (Fig. 7A). These samples are located at 5 and 162 m depth and the present- day difference in temperature between these sample is less than 3° C which is not expected to play a significant role during inverse modelling. Oldest and youngest single grain ages are 666.6 and 138.2 Ma respectively. 15 The basic inverse model includes only two constraints: 1) due to the lack of data documenting the thermal history below the AFT partial annealing zone (> 120°C), the temperature is loosely constrained (160 ± 40°C) at 975 ± 25 Ma; 2) a present-day temperature of 10 ± 4°C. The time-temperature paths between 1 Ga and present include 25 segments, are qualified as ‘intermediate’ (no sudden changes) and are characterized by cooling rates < 2°C (typical of cratonic settings). Modeling results indicate that both the AFT age (goodness of fit = 0.96) and the track length distribution (goodness of fit = 0.98) can be adequately fit with a nearly monotonic cooling (Fig. 7B). An alternative model (not shown) aims to ‘force’ some decrease in temperature during the Paleozoic using the same approach as the Musselwhite example (temperature constraint at 450 Ma = ± 30°C the weighted mean path of the basic model and a loosely defined period of increase in temperature between 445 and 350 Ma). Both the best-fit path and the weighted mean path of the ‘forced heating’ model do not show any significant increase in temperature in the 445-350 Ma time interval. Figure 7: Roberto mine composite sample. A) Radial plot; On this diagram, more precise fission-track ages plot further from the origin along the x-axis (precision). Data plotted using Radial Plotter software (Vermeesch, 2009). B) Inverse model results with the ‘basic’ scenario; The best fit path is shown in dark blue and the weighted mean path in black. 16 Results from both the ‘basic’ and ‘forced heating’ models are however unable to explain the fact that some apatite grains have been partially annealed. Also in both cases, the predicted oldest single grain ages are < 475 Ma, significantly lower than measured (666.6 Ma). In order to account for partial annealing, we test a scenario in which samples were located relatively close to surface (35 < temperature < 70°C) at ca 500 Ma. Inverse modeling results (Fig. 8) show good fits for age and length (0.97 and 0.94 respectively) and an oldest predicted single grain age of 624 Ma. In this model, both the best-fit path and the weighted mean path show moderate (20-30°C) temperature increase during the Paleozoic. Figure 8: Inverse model results with the scenario in which samples were located relatively close to surface (35 < temperature < 70°C) at ca 500 Ma. Good and acceptable paths are in magenta and grey respectively. The best fit path is shown in dark blue and the weighted mean path in black. 5c- QTQt model – vertical profile AFT results from the three Roberto mine samples have been kept separate and modeled as a vertical profile in QTQt software. Maximum heating/cooling rates were fixed at 5°C. The model was run for over 300,000 iterations and showed good convergence. The expected model (the preferred single model, a weighted mean model where the weighting is provided by the posterior probability) indicates that a continuous cooling accounts 17 for the data (Fig. 9). However, the 95% credible interval reflects the uncertainty of the model and that there is a possibility of a significant (> 20°C) increase in temperature during the Paleozoic (green arrow on Fig. 9). Figure 9: QTQt inverse modeling results for the three samples from the Roberto mine. 6. Meadowbank Mine The Meadowbank gold deposit (Nunavut) is hosted in greenschist- to amphibolite-grade polydeformed Neoarchean banded iron formation within the Rae domain of the western Churchill Province (Janvier et al., 2015). Sample MBK-12-493 yielded a central AFT age of 447.7 ± 24.5 Ma, based on 29 apatite grains. (Fig. 10A). The mean track length (non-projected) is 12.27 ± 1.64 µm. All apatite grains analysed are compositionally homogeneous with chlorine content < 0.1%. AFT ages decrease with increasing single grain Uranium content (Fig. 10B). The basic inverse model includes the same constraints as for the Roberto mine (two T-t constraints only). Results suggest a nearly monotonic cooling (Fig. 10C; goodness of fit of 0.77 and 0.88 for AFT age and track length respectively). The model with a ‘forced’ increase in 18 temperature during the Paleozoic (not shown) shows a very low increase in temperature in the 445-350 Ma time interval (± 4°C for the weighted mean path; ± 0°C for the best fit path). A model (not shown) with relatively low (35 < t < 70°C) temperatures at ca 500 Ma (similar to the one tested for the Roberto mine) yields comparable results. Figure 10: Meadowbank mine sample. A) Radial plot; On this diagram, more precise fission-track ages plot further from the origin along the x-axis (precision). Radial plot done using the Radial Plotter software (Vermeesch, 2009). B) Uranium content versus AFT age diagram; C) Inverse model results with the ‘basic’ scenario; The best fit path is shown in dark blue and the weighted mean path in black. 7. Raglan Mine The Raglan Mine (Quebec) is a Nickel-Cu-(PGE) deposit hosted with a series of mafic- ultramafic complexes in the lower greenschist facies of the east-central part of the early Proterozoic Cape Smith Belt of the Ungava Peninsula (Lesher, 2007). Four samples 19 corresponding to the rock types distinguished by mine geologists (‘normal’ gabbro, mafic gabbro, sediments and volcanics) with weight > 10 kg were collected in the Raglan mine. Only one gabbroic sample located at a depth of 630 m yielded enough apatite grains to be dated. The Raglan-2 sample has a central age of 281 ± 37 Ma based on 27 apatite grains (Fig. 11). Unfortunately only a single track length was measured preventing a quantitative assessment of the thermal history through inverse modelling. However, AFT data reveal that the central age is much younger than most of published AFT ages in the Canadian Shield (Pinet and Brake, 2018). On the radial plot (Fig. 11) grain data can be divided in two populations with a peak at 295 Ma and a less well defined peak at 112 Ma. Figure 11: Radial plot of the Raglan-2 sample. On this diagram, more precise fission-track ages plot further from the origin along the x-axis (precision). Radial plot done using the Radial Plotter software (Vermeesch, 2009). The presence of single grain ages < 200 Ma bear similarities with results from a sample collected on Akpatok Island at a depth of 340 m, 310 km to the east (central age 230.6 ± 13.5 Ma; Pinet et al., 2016). However, when reported on a AFT age vs depth diagram (Fig. 12), the central age of the Raglan sample is comparable with those from Sudbury and LaRonde mine located at similar depths. 20 8. Discussion 8a- Sampling strategy AFT data presented in this study aimed to document thermochronological history of samples located on three vertical profiles (Musselwhite, Raglan and Roberto mines). This aim was incompletely achieved for the Musselwhite and Roberto mines because crushed samples from surface (Musselwhite mine) or depth (down to -805 m in the Roberto mine) did not yield apatite, which restricted the extent of the analyzed vertical profiles. Adding new samples from these sites may provide weight to the presented interpretation and should be considered. In the Raglan mine, mafic and ultramafic rocks have poor apatite yields and prevent a detailed appraisal of a vertical profile. Meadowbank mine is an open pit and deep drill holes were not available for this study. AFT results also show that iron formation (Musselwhite) and greywacke (Roberto) are appropriate lithologies for AFT dating. Apatites from these two sites are monocompositional and correspond to near end-member fluorapatite. A negative correlation of single grain apatite ages with Uranium content has been documented in Musselwhite and Meadowbank mines, but not in the Roberto Mine. This negative correlation and the overdispersion of single-grain AFT ages in monocompositional fluorapatites (i.e, low retentivity apatites) suggests that, in some cases, radiation damage affects the AFT chronometer, especially in slowly cooling terranes (McDannell et al., 2019a). However, the way radiation damage should be taken into account during inverse modelling remains controversial. 8b- Regional significance of AFT results Review of the quantitative burial/exhumation patterns at the scale of the Canadian Shield is beyond the scope of this study and only a brief comparison between AFT analyses from this study and published datasets will be presented. 21 Paleozoic subsidence over part of the Canadian Shield is attested by the sedimentary record of the Hudson Bay Basin and satellite basins. Several lines of evidence (including subsidence analysis, sedimentary xenoliths in kimberlites pipes and organic maturation data; see Pinet et al., 2013 for a review) indicate that the present-day basin outlines are erosional limits only and that sedimentary units have been deposited over vast areas and subsequently eroded away. However, the thickness, age and geographical distribution of such a paleo- sedimentary cover remain poorly constrained. Significant (> 20°C) temperature increases during the Phanerozoic that are most likely associated with sedimentary burial have also been documented through AFT studies in southern Ontario (Lorencak et al., 2004), southeastern (Feinstein et al., 2009) and eastern (Pinet et al., 2016) Manitoba, northern Saskatchewan (Flowers, 2009), Northwest Territories (Ault et al., 2009 and 2013; Kohlmann, 2010), southern Baffin Island (McDannell et al, 2019b) and Hudson Strait (Pinet et al., 2016). This is in marked contrast with results for Musselwhite mine presented in this study. Our inverse modelling results using both HeFTy and QTQt modeling softwares indicate that such an episode of Phanerozoic heating was less pronounced (< 20°C) or negligible over the Musselwhite mine (and possibly the Meadowbank mine), even with models ‘forcing’ an increase in temperature during the 450-350 Ma period. This translates in significantly older ages compared to samples from Sudbury (Lorencak et al., 2004) and LaRonde mine (Pinet, 2018) located at similar depths (Fig. 12). This clearly indicates that the Canadian Shield did not react as a single entity during the last billion years. 22 Figure 12: AFT age versus altitude/depth for two plurikilometric vertical profiles (Sudbury, Lorencak et al, 2004; LaRonde, Pinet, 2018). Note that the samples from the Musselwhite mine are significantly older than samples from Sudbury or LaRonde mine located at similar depths. Results from the Roberto mine illustrate the difficulty to model AFT data in the absence of geological evidence and independent geochronometers. In this case, the model in which samples were located relatively close to surface (35 < temperature < 70°C) at ca 500 Ma and then slightly heated during the Paleozoic better accounts for the partial annealing of some apatite grains, but remains to be better documented. Interpretation of new (McDannell, in press) and published AFT data over the Canadian Shield should result in a better understanding of exhumation/subsidence patterns in time and space. These patterns will be compared with: 1) the boundaries of Precambrian Terranes (Percival et al., 2012) brought together during a series of Paleoproterozoic to Mesoproterozoic orogenic events; 2) the positive physiographic elements inferred to have influenced Paleozoic sedimentation (i.e., the arches of Sandford, 1987); 3) the present-day lithospheric architecture (crustal and/or lithospheric thickness, heat flow domains…) or 4) the position compared to Phanerozoic deforming zones. These comparisons may potentially challenge/add complexity to the ‘stability paradigm’ associated with cratons worldwide. 23 9. Acknowledgments Williams Oswald, Arnaud Fontaine, Vivien Janvier and Daniel Patry are thanked for providing the samples. Without their help, this study would not have been possible. Thanks also to Denis Lavoie for his support during the GEM program and Virginia Brake for the internal review of the manuscript. 10. References Ault, A.K., Flowers, R.M., Bowring, S.A., 2009. Phanerozoic burial and unroofing history of the western Slave craton and Wopmay orogeny from apatite (U-Th)/He thermochronometry. Earth and Planetary Science Letters, 284, 1-11. Ault, A.K., Flowers, R.M., Bowring, S.A., 2013. Phanerozoic surface history of the Slave craton. Tectonics, 32, 1066-1083. Burtner, R. L., Nigrini, A., Donelick, R. A., 1994. Thermochronology of Lower Cretaceous source rocks in the Idaho-Wyoming thrust belt. American Association Petroleum Geology Bulletin, 78, 1613-1636. Carlson, W.D., Donelick, R.A., Ketcham, R.A., 1999. Variability of apatite fission-track annealing kinetics: I. Experimental results. American Mineralogist, 84, 1213-1223. Donelick, R.A., O’Sullivan, P.B., Ketcham, R.A., 2005. Apatite fission track analysis. Reviews in Mineralogy and Geochemistry, 58, 49-94. Feinstein, S., Kohn, B., Osadetz, K., Everitt, R., O’Sullivan, P., 2009. Variable Phanerozoic history in the southern Canadian Shield: evidence from an apatite fission track profile at the Underground Research Laboratory (URL), Manitoba. Tectonophysics, 475, 190-199. Flowers, R.M., 2009. Exploiting radiation damage control on apatite (U-Th)/He dates in cratonic regions. Earth and Planetary Science Letters, 277, 148-155. Fontaine, A., Dubé, B., Malo, M., McNicoll, V.J., Brisson, T., Doucet, D., and Goutier, J., 2015. Geology of the metamorphosed Roberto deposit (Éléonore mine), James Bay region, Quebec: diversity of mineralization styles in a polyphase tectonometamorphic setting, In: Targeted Geoscience Initiative 4: Contributions to the understanding of Precambrian lode gold deposits and implication for exploration, (ed) B. Dubé and P. Mercier- Langevin, Geological Survey of Canada Open File 7852, p. 209-225. Gallagher, K., 2012. Transdimensional inverse thermal history modeling for quantitative thermochronology. Journal of Geophysical Research, 117, B02408. 24 Gallagher, K., Brown, R., Johnson, C., 1998. Fission track analysis and its applications to geological problems. Annual Review Earth and Planetary Sciences, 26, 519-572. Gallagher, K., Ketcham, R.A., 2018. Comment on ‘Thermal history modelling: HeFTy vs QTQt’ by Vermeesch and Tian. Earth Science Reviews, 176, 387-394. Gleadow, A.J.W., Belton, D.X., Kohn, B.P., Brown, R.W., 2002. Fission track dating of phosphate minerals and the thermochronology of apatite. In Kohn, M., Rakovan, J. and Hugues, J.M. (eds.) Phosphates – Geochemical, Geobiological and Material importance, Reviews in Mineralogy and Geochemistry, 48, 579-630. Green, P.F., Duddy, I.R., Gleadow, A.J.W., Tingate, P.R., Laslett, G.M., 1985. Fission track annealing in apatite track length measurements and the form of the Arrhenius plot. Nuclear Tracks, 10, 323-328. Green, P.F., Duddy, I.R., 2012. Thermal history reconstruction in sedimentary basins using apatite fission-track analysis and related techniques. In: Analysing the thermal history of sedimentary basins: method and case studies, SEPM Special Publication No 103, p. 65-104. Janvier, V., Castonguay, S., Mercier-Langevin, P., Dubé, B., Malo, M., McNicoll, V.J., Creaser, R.A., de Chavigny, B., and Pershson, S.J., 2015. Geology of the banded iron formation- hosted Meadowbank gold deposit, Churchill Province, Nunavut, In: Targeted Geoscience Initiative 4: Contributions to the understanding of Precambrian lode gold deposits and implication for exploration, (ed) B. Dubé and P. Mercier-Langevin, Geological Survey of Canada Open File 7852, p. 255-269. Ketcham, R.A., 2005. Forward and inverse modeling of low-temperature thermochronometry data. Review in Mineralogy and Geochemistry, 58, 275-314. Ketcham, R.A., 2013. HeFTy, version 1.8.2. Manual user dated 2 october 2013. Kohlmann, F., 2010. Insights into the nanoscale formation of fission tracks in solids and a low temperature thermochronology study of the Archean Slave province, Northwestern Territories, Canada. Ph. D Thesis, Univ. Melbourne (Australia), 302 p. Lavoie, D., Pinet, N., Dietrich, J., Chen, Z., 2015. The Paleozoic Hudson Bay Basin in northern Canada: new insights into hydrocarbon potential of a frontier intracratonic basin: American Association of Petroleum Geologist Bulletin, 99, 859-888. Lesher, C.M., 2007. Ni-Cu-(PGE) deposits in the Raglan area, Cape Smith Belt, New Quebec, In: Goodfellow, W.D., ed., Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods: Special Publication No 5, Mineral Deposits division, Geological Association of Canada, p. 351-386. 25 Lorencak, M., Kohn, B.P., Osadetz, K.G., Gleadow, A.J.W., 2004. Combined apatite fission-track and (U-Th)/He thermochronometry in a slowly cooled terrane: result from a 3340-m deep drill hole in the southern Canadian Shield. Earth and Planetary Science Letters, 227, 87-104. Malusà, M.G., Fitzgerald, P.G. (eds), 2019. Fission-track thermochronology and its application to geology. Springer textbooks in Earth Sciences and Environment, 393p. McDannell, K.T., Zeitler, P.K., Schneider, D.A., 2018. Instability of the southern Canadian Shield during the late Proterozoic. Earth and Planetary Science Letters, 490, 100-109. McDannell, K.T., Issler, D.R., O’Sullivan, P.B., 2019a. Radiation-enhanced fission track annealing revisited and consequences for apatite thermochronometry. Geochimica and Cosmichimica Acta, 252, 213-259. McDannell, K.T., Schneider, D.A., P.K., O’Sullivan, P.B., Issler, D.R., 2019b. Reconstructing deep- time histories from integrated thermochronology: an example from southern Baffin Island, Canada. Terra Nova, 31, 189-204. McDannell, K.T., Pinet, N., Issler, D.R., 2020, in press. Exhuming the Canadian Shield: Preliminary interpretations from low-temperature thermochronology and significance for the sedimentary succession of the Hudson Bay Basin, Chapter 8. In: Sedimentary basins of the Canadian North - Contributions to a 1000 Ma geological journey and insight on resource potential, Geological Survey of Canada Bulletin 609. Oswald, W., Castonguay, S., Dubé, B., McNicoll, V.J., Biczok, J., Malo, M., Mercier-Langevin, P., 2015. Geological setting of the world-class Musselwhite gold mine, Superior Province, northwestern Ontario: implication for exploration, In: Targeted Geoscience Initiative 4: Contributions to the understanding of Precambrian lode gold deposits and implication for exploration, (ed) B. Dubé and P. Mercier-Langevin, Geological Survey of Canada Open File 7852, p. 69-84. Percival., J.A., Skulski, T., Sanborn-Barrie, M., Stott, G.M., Leclair, A.D., Corkery, M.T., Boily, M., 2012. Geology and tectonic evolution of the Superior Province, Canada. Chapter 6 In: Tectonic styles in Canada: the LITHOPROBE perspective. Edited by J.A. Percival, F.A. Cook, and R.M. Clowes. Geological Association of Canada, Special Paper 49, pp. 321- 378. Pinet, N., Lavoie, D., Dietrich, J., Hu, K., Keating, P., 2013. Architecture and subsidence history of the Hudson Bay intracratonic basin. Earth-Science Review, 125, 1-23. Pinet, N., Kohn, B.P., Lavoie, D., 2016. The ups and downs of the Canadian Shield: 1- preliminary results of apatite fission track analysis from the Hudson Bay region. Geological Survey of Canada, Open File 8110, 59 p. Pinet, N., 2018. The ups and downs of the Canadian Shield: 2- preliminary results of apatite fission-track analysis from a 3.6 km vertical profile, LaRonde mine, Quebec. Geological 26 Survey of Canada, open file 8385, 44 p. Pinet, N., Brake, V., 2018. Preliminary compilation of apatite fission-track data in Canada. Open File 8454, 1 poster. Sanford, B.V., 1987. Paleozoic geology of the Hudson platform. In: Beaumont, C. and Tankard, A.J. (eds), Sedimentary basins and basin-forming mechanisms, Canadian Society of Petroleum Geologists, Memoir 12, p. 483-505. Vermeesch, P., 2009. RadialPlotter: a Java application for fission track, luminescence and other radial plots. Radiation Measurements, 44, 4, 409-410. Vermeesch, P., Tian, Y., 2014. Thermal history modelling: HeFTy vs. QTQt. Earth Science Reviews, 139, 279-290. 27 SAMPLE MW-12-105 Age: Archean type: Iron Formation Easting : 90˚21'49'' (approximate) Northing: 52˚36'46'' (approximate) Elevation: -170 m GRAIN_DATA Number of grains 20 Number of Dpars 80 Grain# Ns Ni # square MDpar MDprp U (ppm) AFT age 1 29 10 15 3.2 1.419 8 630.8 2 54 23 15 3.454 1.479 18 515.3 3 14 8 8 3.052 1.301 12 388.0 4 36 13 12 3.105 1.231 13 603.6 5 56 23 28 2.94 1.338 10 533.6 6 41 18 15 3.063 1.766 14 500.5 7 29 14 12 3.063 1.419 13 456.8 8 39 14 10 2.918 1.535 16 607.0 9 13 8 10 2.511 1.262 9 361.0 10 87 29 24 2.88 1.317 14 651.4 11 45 20 27 2.652 1.144 9 494.7 12 31 22 18 2.599 1.499 14 314.2 13 86 40 20 2.826 1.411 23 473.5 14 87 43 32 3.104 1.232 16 446.5 15 83 38 40 2.461 1.316 11 480.7 16 15 8 9 2.96 1.595 10 414.8 17 67 40 35 2.852 1.211 13 371.8 18 45 11 28 3.039 1.573 5 872.9 19 37 17 15 2.621 1.324 13 479.1 20 16 9 12 2.73 1.543 9 393.9 LENGTH_DATA Number_of_lens 11 Number_of_dpar 28 # Grain Nb Len Type MDpar MDprp NDpar 1 2 12.8 T 3.069 1.451 4 2 8.677 T 2.988 1.54 4 3 8 8.361 T 2.964 1.311 4 4 8 12.124 T 2.964 1.311 0 5 8 10.498 T 2.964 1.311 0 6 8 13.038 T 2.964 1.311 0 7 11.212 T 3.14 1.749 4 8 9.773 T 2.539 1.148 4 9 18 13.825 T 2.815 1.332 4 10 12.583 T 2.815 1.332 0 11 20 9.392 T 2.736 1.418 4 SAMPLE MW12-UG-105 28 MICROPROBE DATA MASS PERCENT Grain No. P2O5 La2O3 F SiO2 Cl CaO Na2O SrO FeO MnO Total 1 41.592 0.000 3.174 0 0.009 55.541 0.017 0 0.025 0.036 99.079 2 41.469 0.000 2.667 0 0.003 54.569 0.010 0 0.113 0.023 97.730 3 41.786 0.036 2.739 0 0.006 56.302 0.023 0 0.044 0.006 99.788 4 41.275 0.000 2.815 0 0.002 55.656 0.010 0 0.032 0.014 98.619 5 41.710 0.000 2.799 0 0.014 55.375 0.026 0 0.041 0.008 98.849 6 42.481 0.059 2.402 0 0.018 55.989 0.009 0 0.039 0.005 100.018 7 41.750 0.000 3.016 0 0.001 55.080 0.044 0 0.060 0.039 98.756 8 42.578 0.057 3.795 0 0.007 55.022 0.000 0 0.073 0.033 99.965 9 41.750 0.000 2.864 0 0.002 55.322 0.039 0 0.048 0.000 98.875 10 42.056 0.072 2.778 0 0.000 55.581 0.006 0 0.048 0.000 99.432 11 41.872 0.000 3.169 0 0.010 55.066 0.000 0 0.028 0.026 98.868 12 42.603 0.000 2.996 0 0.009 55.921 0.000 0 0.055 0.052 100.406 13 41.315 0.000 2.953 0 0.010 55.606 0.021 0 0.061 0.000 98.721 14 41.689 0.000 2.680 0 0.016 55.317 0.026 0 0.020 0.017 98.653 15 42.317 0.000 2.695 0 0.006 55.191 0.002 0 0.058 0.047 99.210 16 41.955 0.000 2.551 0 0.008 55.198 0.034 0 0.000 0.008 98.678 17 42.034 0.000 2.750 0 0.009 55.164 0.000 0 0.100 0.063 99.049 18 41.882 0.037 2.580 0 0.010 55.566 0.011 0 0.020 0.001 99.037 19 41.942 0.024 2.899 0 0.006 55.532 0.018 0 0.021 0.032 99.300 20 41.756 0.038 2.783 0 0.009 55.332 0.038 0 0.035 0.008 98.888 CATION TOTAL Grain No. P La F Si Cl Ca Na Sr Fe Mn Total 1 0.2385 0 0.0637 0 0.0001 0.4031 0.0002 0 0.0001 0.0002 0.706 2 0.2399 0 0.0545 0 0 0.3995 0.0001 0 0.0006 0.0001 0.6948 3 0.2377 0.0001 0.055 0 0.0001 0.4053 0.0003 0 0.0002 0 0.6987 4 0.2377 0 0.0571 0 0 0.4055 0.0001 0 0.0002 0.0001 0.7007 5 0.2391 0 0.0565 0 0.0001 0.4017 0.0003 0 0.0002 0 0.698 6 0.2398 0.0001 0.0482 0 0.0002 0.3999 0.0001 0 0.0002 0 0.6887 7 0.2396 0 0.0607 0 0 0.4 0.0006 0 0.0003 0.0002 0.7015 8 0.2416 0.0001 0.0744 0 0.0001 0.3951 0 0 0.0004 0.0002 0.712 9 0.2392 0 0.0578 0 0 0.4012 0.0005 0 0.0003 0 0.6992 10 0.2395 0.0002 0.0558 0 0 0.4005 0.0001 0 0.0003 0 0.6966 11 0.24 0 0.0635 0 0.0001 0.3995 0 0 0.0002 0.0002 0.7036 12 0.2401 0 0.0593 0 0.0001 0.3989 0 0 0.0003 0.0003 0.6992 13 0.2378 0 0.0597 0 0.0001 0.405 0.0003 0 0.0003 0 0.7032 14 0.2392 0 0.0543 0 0.0002 0.4016 0.0003 0 0.0001 0.0001 0.696 15 0.2408 0 0.0542 0 0.0001 0.3974 0 0 0.0003 0.0003 0.6933 16 0.24 0 0.0517 0 0.0001 0.3997 0.0004 0 0 0 0.6919 17 0.24 0 0.0554 0 0.0001 0.3987 0 0 0.0006 0.0004 0.6954 18 0.2392 0.0001 0.0522 0 0.0001 0.4016 0.0001 0 0.0001 0 0.6935 19 0.2393 0.0001 0.0582 0 0.0001 0.401 0.0002 0 0.0001 0.0002 0.6993 20 0.2392 0.0001 0.0562 0 0.0001 0.4011 0.0005 0 0.0002 0 0.6976 29 Age: Archean type: Iron Formation Easting : 90˚21'49'' (approximate) Northing: 52˚36'46'' (approximate) Elevation: -920 m GRAIN DATA Number of grains 22 Number of Dpars 88 Grain# Ns Ni # square MDpar MDprp U (ppm) AFT age 1 208 95 100 2.668 1.105 11 470.8 2 12 5 15 2.221 1.107 4 514.3 3 26 9 7 2.765 1.158 15 614.2 4 30 13 30 2.231 1.051 5 495.2 5 10 6 16 2.656 1.117 4 361.4 6 20 6 12 2.37 0.981 6 703.7 7 35 16 25 2.645 1.471 8 470.4 8 16 6 15 3.092 1.621 5 569.0 9 32 17 25 2.348 1.594 8 406.8 10 39 16 16 2.375 1.136 12 522.0 11 14 7 10 2.885 1.626 8 431.4 12 11 6 12 2.811 2.023 6 396.5 13 11 6 8 2.662 1.58 9 396.5 14 26 15 21 2.429 1.254 8 375.5 15 14 5 9 2.303 1.357 7 596.1 16 59 17 60 2.299 1.282 3 731.1 17 103 39 60 2.483 1.141 8 563.7 18 39 16 18 2.468 1.03 11 522.0 19 31 12 36 2.419 1.092 4 551.9 20 68 30 32 2.635 1.002 11 486.8 21 75 28 42 2.532 1.105 8 571.4 22 36 16 48 2.514 1.103 4 483.3 LENGTH_DATA Number_of_lens 11 Number_of_dpar 24 # Grain Nb Len Type MDpar MDprp NDpar Angle with C- 1 1 14.275 T 2.72 1.208 4 62.438 2 1 13.605 T 2.72 1.208 0 80.640 3 1 9.345 T 2.72 1.208 0 69.784 4 2 11.785 T 2.277 1.098 4 80.408 5 3 9.761 T 2.364 1.183 4 72.792 6 16 9.986 T 2.303 1.14 4 61.988 7 19 14.023 T 2.416 1.138 4 63.860 8 21 14.006 T 2.219 1.194 4 68.567 9 21 10.581 T 2.219 1.194 0 32.190 10 21 11.754 T 2.219 1.194 0 79.808 11 21 11.173 T 2.219 1.194 0 53.217 SAMPLE MW12-UG-023 30 MICROPROBE DATA MASS PERCENT Grain No. P2O5 La2O3 F SiO2 Cl CaO Ce2O3 Na2O SrO FeO MnO Total 1 41.928 0.048 3.037 0 0.012 55.951 0.0740 0.009 0.000 0.026 0.040 99.843 2 42.326 0.000 2.624 0 0.011 55.575 0.0510 0.000 0.000 0.076 0.044 99.600 3 41.999 0.000 3.198 0 0.005 55.812 0.0430 0.005 0.000 0.084 0.021 99.819 4 41.969 0.000 2.589 0 0.006 55.499 0.0310 0.017 0.000 0.024 0.000 99.044 5 41.236 0.118 2.959 0 0.000 55.690 0.0200 0.010 0.000 0.068 0.000 98.855 6 41.646 0.009 3.057 0 0.034 55.195 0.0790 0.004 0.085 0.075 0.040 98.929 7 41.783 0.000 2.621 0 0.008 55.976 0.0560 0.024 0.000 0.033 0.000 99.395 8 41.293 0.000 2.637 0 0.039 55.402 0.0150 0.014 0.000 0.054 0.049 98.384 9 41.703 0.000 2.471 0 0.010 56.116 0.0560 0.000 0.000 0.002 0.014 99.330 10 41.539 0.024 2.956 0 0.001 55.968 0.0180 0.017 0.000 0.024 0.000 99.302 11 41.267 0.000 2.795 0 0.012 55.184 0.0050 0.007 0.000 0.065 0.024 98.179 12 40.810 0.000 2.753 0 0.015 55.943 0.0660 0.025 0.062 0.088 0.009 98.609 13 41.977 0.067 3.023 0 0.006 55.962 0.0030 0.015 0.000 0.000 0.041 99.820 14 41.494 0.000 2.832 0 0.004 54.831 0.0000 0.000 0.000 0.062 0.000 98.030 15 41.003 0.000 2.706 0 0.009 54.116 0.0030 0.000 0.000 0.065 0.027 96.788 16 42.017 0.000 2.819 0 0.004 54.086 0.0000 0.000 0.142 0.077 0.012 97.969 17 42.258 0.000 2.890 0 0.010 54.584 0.0000 0.008 0.000 0.039 0.006 98.576 18 42.297 0.000 2.910 0 0.014 54.878 0.1140 0.001 0.000 0.007 0.028 99.021 19 41.833 0.000 2.824 0 0.012 54.394 0.0840 0.016 0.000 0.031 0.024 98.026 20 42.520 0.097 3.198 0 0.011 55.213 0.0000 0.000 0.000 0.053 0.014 99.757 21 41.664 0.000 2.940 0 0.051 54.403 0.0660 0.010 0.000 0.064 0.016 97.964 22 42.045 0.000 2.996 0 0.010 54.079 0.0000 0.006 0.020 0.006 0.004 97.903 CATION TOTAL Grain No. P La F Si Cl Ca Ce Na Sr Fe Mn Total 1 0.2385 0.0001 0.0606 0 0.0001 0.4028 0.00020 0.0001 0.0000 0.0001 0.0002 0.7027 2 0.2401 0.0000 0.0527 0 0.0001 0.3989 0.00010 0.0000 0.0000 0.0004 0.0003 0.6927 3 0.2389 0.0000 0.0636 0 0.0001 0.4018 0.00010 0.0001 0.0000 0.0005 0.0001 0.7053 4 0.2395 0.0000 0.0523 0 0.0001 0.4008 0.00010 0.0002 0.0000 0.0001 0.0000 0.6931 5 0.2373 0.0003 0.0598 0 0.0000 0.4057 0.00010 0.0001 0.0000 0.0004 0.0000 0.7038 6 0.2391 0.0000 0.0615 0 0.0004 0.401 0.00020 0.0000 0.0003 0.0004 0.0002 0.7031 7 0.2382 0.0000 0.0529 0 0.0001 0.4039 0.00010 0.0003 0.0000 0.0002 0.0000 0.6957 8 0.238 0.0000 0.0537 0 0.0004 0.4042 0.00000 0.0002 0.0000 0.0003 0.0003 0.6971 9 0.2379 0.0000 0.05 0 0.0001 0.4051 0.00010 0.0000 0.0000 0.0000 0.0001 0.6934 10 0.2377 0.0001 0.0594 0 0.0000 0.4053 0.00000 0.0002 0.0000 0.0001 0.0000 0.7028 11 0.2384 0.0000 0.0569 0 0.0001 0.4034 0.00000 0.0001 0.0000 0.0004 0.0001 0.6995 12 0.2359 0.0000 0.0561 0 0.0002 0.4092 0.00020 0.0003 0.0002 0.0005 0.0001 0.7028 13 0.2387 0.0002 0.0603 0 0.0001 0.4027 0.00000 0.0002 0.0000 0.0000 0.0002 0.7024 14 0.2396 0.0000 0.0576 0 0.0000 0.4007 0.00000 0.0000 0.0000 0.0004 0.0000 0.6984 15 0.2397 0.0000 0.0558 0 0.0001 0.4003 0.00000 0.0000 0.0000 0.0004 0.0002 0.6965 16 0.2419 0.0000 0.0572 0 0.0000 0.3941 0.00000 0.0000 0.0006 0.0004 0.0001 0.6944 17 0.2418 0.0000 0.0582 0 0.0001 0.3952 0.00000 0.0001 0.0000 0.0002 0.0000 0.6956 18 0.2413 0.0000 0.0584 0 0.0002 0.3962 0.00030 0.0000 0.0000 0.0000 0.0002 0.6966 19 0.241 0.0000 0.0573 0 0.0001 0.3966 0.00020 0.0002 0.0000 0.0002 0.0001 0.6957 20 0.2412 0.0002 0.0635 0 0.0001 0.3963 0.00000 0.0000 0.0000 0.0003 0.0001 0.7017 21 0.2406 0.0000 0.0596 0 0.0006 0.3976 0.00020 0.0001 0.0000 0.0004 0.0001 0.6993 22 0.2422 0.0000 0.0606 0 0.0001 0.3943 0.00000 0.0001 0.0001 0.0000 0.0000 0.6975 31 p Age: Archean rock type: Iron Formation Easting : 90˚21'49'' (approximate) Northing: 52˚36'46'' (approximate) Elevation: -1020 m GRAIN_DATA Number of grains 21 Number of Dpars 84 Grain# Ns Ni # square MDpar MDprp U (ppm) AFT age 1 58 39 16 2.524 1.074 28 334 2 33 12 12 2.79 1.145 11 604 3 112 55 32 2.756 1.385 20 453 4 101 47 49 2.729 1.232 11 477 5 148 57 35 2.394 1.259 19 572 6 127 50 56 2.682 1.313 10 560 7 67 28 20 2.735 1.193 16 529 8 109 43 49 2.711 1.106 10 559 9 25 11 42 3.13 1.252 3 503 10 140 75 40 2.786 1.421 22 416 11 22 8 15 2.495 1.252 6 604 12 78 36 27 2.466 1.216 15 481 13 107 35 50 2.68 1.139 8 668 14 53 24 20 2.604 1.341 14 490 15 58 25 20 2.619 1.241 14 513 16 65 42 56 2.532 1.197 9 347 17 83 48 35 2.811 1.285 16 386 18 34 24 12 2.837 1.172 23 318 19 26 10 100 2.667 1.31 1 573 20 82 37 60 2.675 1.109 7 491 21 101 61 60 2.538 1.162 12 371 SAMPLE MW13-UG-010 32 LENGTH_DATA Number_of_lens 85 Number_of_dpar 136 # Grain Nb Len Type MDpar MDprp NDpar Angle with C- 1 1 4.13 T 2.559 1.18 4 83.511 2 3 10.958 T 2.714 1.259 4 55.65 3 3 15.014 T 2.714 1.259 0 38.462 4 3 12.835 T 2.714 1.259 0 73.746 5 13.131 T 2.819 1.285 4 76.231 6 11.476 T 2.819 1.285 0 58.717 7 13.58 T 2.819 1.285 0 70.893 8 12.309 T 2.819 1.285 0 67.223 9 8.211 T 2.618 1.259 4 50.337 10 1 13.842 T 2.725 1.198 4 75.77 11 1 11.161 T 2.791 1.207 4 74.681 12 10 12.622 T 2.834 1.192 4 87.178 13 10 14.067 T 2.89 1.33 4 46.27 14 10 12.288 T 2.89 1.33 0 54.413 15 10 10.145 T 2.89 1.33 0 88.568 16 10 13.144 T 2.89 1.33 0 85.299 17 10 11.456 T 2.89 1.33 0 68.459 18 10 12.667 T 2.89 1.33 0 83.718 19 13.996 T 2.693 1.197 4 65.046 20 9.717 T 2.693 1.197 0 81.743 21 12.783 T 2.693 1.197 0 47.39 22 10.512 T 2.693 1.197 0 83.51 23 13 14.617 T 2.58 1.265 4 82.642 24 13 12.018 T 2.58 1.265 0 77.557 25 12.12 T 2.616 1.204 4 87.677 26 9.972 T 2.616 1.204 0 46.443 27 11.658 T 2.616 1.204 0 53.982 28 11.81 T 2.607 1.109 4 64.18 29 14.656 T 2.806 1.414 4 74.73 30 17 13.368 T 2.811 1.181 4 73.721 31 17 11.738 T 2.811 1.181 0 88.046 32 17 11.346 T 2.811 1.181 0 56.994 33 17 13.211 T 2.811 1.181 0 46.259 34 10.234 T 2.707 1.3 4 52.865 35 14.123 T 2.538 1.144 4 68.04 36 12.543 T 2.527 1.238 4 60.812 33 37 14.302 T 2.496 1.294 4 49.334 38 3.707 T 2.575 1.099 4 80.557 39 12.7 T 2.662 1 4 60.923 40 11.662 T 2.662 1 0 84.173 41 13.051 T 2.662 1 0 70.716 42 9.317 T 2.353 1.097 4 81.758 43 10.863 T 2.585 1.175 4 48.513 44 7.04 T 2.585 1.175 0 73.808 45 13.271 T 2.585 1.175 0 65.189 46 10.033 T 2.628 1.152 4 89.895 47 13.475 T 2.628 1.152 0 77.576 48 14.155 T 2.628 1.152 0 69.128 49 10.196 T 2.628 1.152 0 84.706 50 10.656 T 2.628 1.152 0 60.657 51 9.44 T 2.628 1.152 0 56.634 52 11.914 T 2.628 1.152 0 59.617 53 10.96 T 2.665 1.21 4 53.566 54 12.707 T 2.665 1.21 0 72.836 55 12.424 T 2.665 1.21 0 50.392 56 10.342 T 2.736 1.161 4 69.912 57 9.164 T 2.596 1.339 4 50.716 58 13.321 T 2.596 1.339 0 58.968 59 14.227 T 2.596 1.339 0 64.454 60 11.31 T 2.596 1.339 0 81.823 61 14.126 T 2.596 1.339 0 72.64 62 16.28 T 2.764 1.118 4 85.588 63 13.646 T 2.69 1.181 4 73.766 64 14.378 T 2.69 1.181 0 68.998 65 11.961 T 2.69 1.181 0 65.899 66 8.362 T 2.534 1.253 4 73.931 67 8.447 T 2.534 1.253 0 84.398 68 12.544 T 2.534 1.253 0 50.086 69 12.39 T 2.414 1.236 4 50.881 70 9.291 T 2.414 1.236 0 79.548 71 11.943 T 2.414 1.236 0 57.939 72 10.526 T 2.414 1.236 0 39.161 73 12.028 T 2.468 1.105 4 81.167 74 10.163 T 2.468 1.105 0 50.102 75 11.446 T 2.468 1.105 0 61.961 76 10.097 T 2.468 1.105 0 50.102 77 13.464 T 2.637 1.059 4 73.877 78 13.397 T 2.637 1.059 0 74.681 79 10.383 T 2.73 1.249 4 81.402 80 12.482 T 2.73 1.249 0 70.049 81 11.607 T 2.73 1.249 0 74.633 82 15.193 T 2.73 1.249 0 54.204 83 11.919 T 2.53 1.084 4 82.853 84 9.134 T 2.53 1.084 0 63.336 85 11.539 T 2.53 1.084 0 78.736 34 MICROPROBE DATA (1) MASS PERCENT Grain No. P2O5 La2O3 F SiO2 Cl CaO Ce2O3 Na2O SrO FeO MnO Total 1 41.832 0.091 2.564 0 0.010 55.003 0.050 0.011 0 0.028 0.040 98.547 2 41.074 0.000 2.521 0 0.009 54.434 0.021 0.043 0 0.045 0.031 97.115 3 40.687 0.000 2.801 0 0.017 53.051 0.000 0.093 0 0.032 0.000 95.498 4 41.239 0.066 2.768 0 0.010 54.741 0.005 0.035 0 0.048 0.000 97.745 5 41.053 0.000 2.510 0 0.010 55.156 0.000 0.003 0 0.030 0.000 97.703 6 40.499 0.000 2.763 0 0.015 54.811 0.000 0.028 0 0.019 0.024 96.993 7 41.488 0.000 2.697 0 0.010 54.844 0.021 0.027 0.064 0.077 0.049 98.139 8 41.131 0.031 3.068 0 0.006 54.480 0.003 0.000 0 0.081 0.000 97.507 9 40.989 0.000 2.417 0 0.018 54.487 0.000 0.000 0 0.052 0.007 96.948 10 40.894 0.000 3.004 0 0.009 54.714 0.010 0.005 0 0.049 0.055 97.473 11 41.199 0.079 3.002 0 0.010 55.637 0.063 0.000 0 0.008 0.000 98.732 12 41.249 0.074 2.933 0 0.005 55.368 0.081 0.010 0 0.014 0.014 98.512 13 41.144 0.000 2.920 0 0.011 54.566 0.000 0.003 0 0.063 0.000 97.476 14 41.383 0.011 3.000 0 0.006 55.159 0.000 0.006 0 0.016 0.000 98.317 15 41.389 0.000 3.016 0 0.017 55.277 0.000 0.017 0 0.021 0.000 98.463 16 41.083 0.068 2.706 0 0.013 55.162 0.057 0.000 0 0.000 0.006 97.953 17 41.130 0.000 2.909 0 0.010 54.691 0.044 0.000 0 0.000 0.000 97.557 18 41.477 0.005 2.675 0 0.013 55.621 0.000 0.006 0 0.066 0.000 98.734 19 41.085 0.025 2.287 0 0.043 55.112 0.018 0.000 0 0.000 0.016 97.613 20 41.241 0.073 2.641 0 0.011 55.639 0.023 0.011 0 0.026 0.000 98.551 21 41.007 0.038 2.646 0 0.017 55.394 0.000 0.000 0 0.008 0.000 97.992 (2) CATION TOTAL Grain No. P La F Si Cl Ca Ce Na Sr Fe Mn Total 1 0.2399 0.0002 0.0521 0 0.0001 0.3992 0.0001 0.0001 0 0.0002 0.0002 0.6921 2 0.2392 0 0.052 0 0.0001 0.4012 0.0001 0.0006 0 0.0003 0.0002 0.6937 3 0.2408 0 0.0583 0 0.0002 0.3973 0 0.0013 0 0.0002 0 0.6981 4 0.2391 0.0002 0.0565 0 0.0001 0.4016 0 0.0005 0 0.0003 0 0.6984 5 0.238 0 0.0515 0 0.0001 0.4047 0 0 0 0.0002 0 0.6945 6 0.2373 0 0.057 0 0.0002 0.4064 0 0.0004 0 0.0001 0.0001 0.7016 7 0.2393 0 0.0549 0 0.0001 0.4004 0.0001 0.0004 0.0003 0.0004 0.0003 0.6963 8 0.2393 0.0001 0.0625 0 0.0001 0.4011 0 0 0 0.0005 0 0.7036 9 0.239 0 0.05 0 0.0002 0.4021 0 0 0 0.0003 0 0.6917 10 0.2383 0 0.0614 0 0.0001 0.4035 0 0.0001 0 0.0003 0.0003 0.7041 11 0.2374 0.0002 0.0607 0 0.0001 0.4058 0.0002 0 0 0 0 0.7045 12 0.238 0.0002 0.0595 0 0.0001 0.4042 0.0002 0.0001 0 0.0001 0.0001 0.7026 13 0.2392 0 0.0596 0 0.0001 0.4015 0 0 0 0.0004 0 0.7009 14 0.2388 0 0.0607 0 0.0001 0.4028 0 0.0001 0 0.0001 0 0.7027 15 0.2386 0 0.061 0 0.0002 0.4033 0 0.0002 0 0.0001 0 0.7034 16 0.238 0.0002 0.0553 0 0.0001 0.4044 0.0001 0 0 0 0 0.6981 17 0.239 0 0.0594 0 0.0001 0.4022 0.0001 0 0 0 0 0.7009 18 0.2382 0 0.0542 0 0.0001 0.4042 0 0.0001 0 0.0004 0 0.6973 19 0.2382 0.0001 0.0472 0 0.0005 0.4043 0 0 0 0 0.0001 0.6905 20 0.2375 0.0002 0.0538 0 0.0001 0.4056 0.0001 0.0001 0 0.0001 0 0.6976 21 0.2375 0.0001 0.0541 0 0.0002 0.406 0 0 0 0 0 0.698 35 Age: Archean rock type: Iron Formation Easting : 90˚21'49'' (approximate) Northing: 52˚36'46'' (approximate) Elevation: -1045 m GRAIN_DATA Number of grains 19 Number of Dpars 76 Grain# Ns Ni # square MDpar MDprp U (ppm) AFT age 1 49 21 49 2.528 1.322 5 531.8 2 194 85 100 2.185 1.066 10 520.6 3 34 18 40 2.454 1.194 5 433.8 4 223 63 42 2.527 1.148 17 790.4 5 10 6 15 2.498 1.168 5 384.3 6 40 17 27 2.415 1.14 7 536.1 7 96 35 24 2.256 1.11 17 620.7 8 25 8 28 2.439 0.983 3 702.7 9 27 10 16 2.501 0.873 7 611.5 10 138 59 100 2.417 0.977 7 533.0 11 55 22 20 2.522 1.144 13 568.1 12 106 49 40 2.384 1.136 14 494.5 13 86 46 35 2.596 1.197 15 429.5 14 39 16 49 2.506 0.988 4 554.5 15 53 29 45 2.391 1.216 7 420.2 16 194 89 100 2.612 1.121 10 498.1 17 19 8 15 2.724 1.114 6 540.9 18 38 20 70 2.594 1.201 3 436.3 19 456 239 100 2.371 1.045 27 438.0 LENGTH_DATA Number_of_lens 18 Number_of_dpar 24 # Grain Nb Len Type MDpar MDprp NDpar Angle with 1 3 11.065 T 2.418 1.167 4 74.42 2 3 11.057 T 2.66 0.982 4 58.94 3 13 10.476 T 2.716 1.183 4 59.711 4 13 11.351 T 2.716 1.183 0 61.31 5 13 8.3 T 2.716 1.183 0 75.759 6 13 7.911 T 2.716 1.183 0 85.354 7 16 11.098 T 2.526 1.162 4 39.719 8 16 15.504 T 2.526 1.162 0 45.711 9 2 14.557 T 2.557 1.089 4 38.838 10 2 9.515 T 2.557 1.089 0 77.078 11 2 7.248 T 2.557 1.089 0 59.499 12 2 12.562 T 2.557 1.089 0 54.557 13 2 11.737 T 2.557 1.089 0 79.786 14 2 12.917 T 2.563 1.086 0 51.516 15 2 14.213 T 2.563 1.086 0 59.877 16 2 14.609 T 2.563 1.086 0 45.295 17 2 14.462 T 2.563 1.086 0 66.866 18 2 14.358 T 2.563 1.086 4 32.061 SAMPLE MW13-UG-018 36 MICROPROBE DATA (1) MASS PERCENT Grain No. P2O5 La2O3 F SiO2 Cl CaO Ce2O3 Na2O SrO FeO MnO Total 1 41.246 0.015 2.706 0 0.02 55.25 0.050 0.01 0 0.009 0.025 98.188 2 41.495 0.000 2.972 0 0.01 53.79 0.099 0.05 0 0.017 0.028 97.206 3 41.738 0.000 2.702 0 0.01 54.32 0.000 0.03 0 0.047 0.033 97.739 4 40.798 0.000 2.928 0 0.02 54.90 0.000 0.10 0 0.087 0.000 97.591 5 41.434 0.000 2.753 0 0.01 55.76 0.031 0.03 0 0.049 0.020 98.925 6 41.951 0.091 2.593 0 0.02 55.20 0.039 0.01 0 0.031 0.024 98.866 7 41.577 0.000 2.630 0 0.01 55.81 0.107 0.09 0 0.038 0.033 99.182 8 40.962 0.087 2.730 0 0.02 55.40 0.024 0.02 0 0.010 0.000 98.099 9 41.737 0.047 2.554 0 0.02 54.64 0.013 0.02 0 0.069 0.051 98.065 10 41.246 0.089 2.783 0 0.01 55.55 0.039 0.03 0 0.001 0.060 98.633 11 41.324 0.050 2.788 0 0.01 56.72 0.000 0.00 0 0.064 0.015 99.798 12 41.213 0.000 2.822 0 0.02 55.04 0.065 0.03 0 0.078 0.005 98.075 13 41.477 0.052 2.551 0 0.01 55.12 0.126 0.08 0 0.029 0.042 98.410 14 41.529 0.000 2.885 0 0.01 55.82 0.000 0.02 0 0.043 0.027 99.116 15 41.105 0.000 2.622 0 0.02 54.79 0.000 0.06 0 0.069 0.001 97.551 16 41.482 0.000 2.770 0 0.01 54.25 0.021 0.05 0 0.062 0.045 97.520 17 41.404 0.000 3.218 0 0.02 55.48 0.029 0.00 0 0.030 0.002 98.826 18 41.521 0.000 2.697 0 0.02 55.26 0.000 0.00 0 0.028 0.009 98.389 19 41.673 0.077 3.044 0 0.01 55.26 0.000 0.00 0 0.035 0.043 98.858 ) CATION TOTAL No. P La F Si Cl Ca Ce Na Sr Fe Mn Total 1 0.2382 0 0.0552 0 0.0002 0.4039 0.0001 0.0001 0 0.0001 0.0001 0.698 2 0.2413 0 0.0606 0 0.0001 0.3958 0.0003 0.0006 0 0.0001 0.0002 0.699 3 0.241 0 0.0551 0 0.0001 0.3969 0 0.0004 0 0.0003 0.0002 0.694 4 0.2377 0 0.0599 0 0.0002 0.4047 0 0.0014 0 0.0005 0 0.7045 5 0.2378 0 0.0557 0 0.0001 0.4049 0.0001 0.0003 0 0.0003 0.0001 0.6994 6 0.2399 0.0002 0.0525 0 0.0002 0.3994 0.0001 0.0001 0 0.0002 0.0001 0.6928 7 0.2378 0 0.0532 0 0.0001 0.404 0.0003 0.0012 0 0.0002 0.0002 0.697 8 0.2373 0.0002 0.0558 0 0.0002 0.4061 0.0001 0.0003 0 0.0001 0 0.7002 9 0.2403 0.0001 0.0521 0 0.0002 0.3981 0 0.0002 0 0.0004 0.0003 0.6917 10 0.2376 0.0002 0.0565 0 0.0001 0.405 0.0001 0.0004 0 0 0.0003 0.7002 11 0.2359 0.0001 0.0561 0 0.0001 0.4097 0 0 0 0.0004 0.0001 0.7025 12 0.2384 0 0.0575 0 0.0002 0.403 0.0002 0.0004 0 0.0004 0 0.7002 13 0.2388 0.0001 0.052 0 0.0002 0.4015 0.0003 0.0011 0 0.0002 0.0002 0.6944 14 0.2379 0 0.0581 0 0.0001 0.4047 0 0.0003 0 0.0002 0.0002 0.7015 15 0.2387 0 0.0538 0 0.0002 0.4026 0 0.0007 0 0.0004 0 0.6964 16 0.2404 0 0.0566 0 0.0001 0.3979 0.0001 0.0007 0 0.0004 0.0003 0.6965 17 0.2383 0 0.0647 0 0.0002 0.4041 0.0001 0 0 0.0002 0 0.7077 18 0.2389 0 0.0548 0 0.0002 0.4024 0 0 0 0.0002 0.0001 0.6967 19 0.2392 0.0002 0.0612 0 0.0001 0.4014 0 0 0 0.0002 0.0002 0.7025 37 SAMPLE RAGLAN2 Age: Archean Rock type gabbro Coordinates Easting -73.677 Northing 61.6876 Elevation -630 GRAIN_DATA Number of grains 27 Number of Dpars 100 Grain# Ns Ni # square MDpar MDprp U (ppm) 1 2 4 10 2.281 0.926 4 2 1 1 8 2.424 1.077 1 3 6 3 28 2.41 0.844 1 4 6 4 18 2.246 1.05 2 5 8 5 24 2.272 0.897 2 6 11 4 20 2.362 0.959 2 7 6 6 18 2.282 0.989 4 8 7 2 16 2.247 1.046 1 9 5 3 15 2.517 1.004 2 10 2 4 24 2.279 0.943 2 11 4 2 9 2.356 0.907 2 12 5 3 24 2.177 1.036 1 13 3 7 24 2.653 1.017 3 14 1 1 15 2.278 0.941 1 15 2 2 6 2.245 0.925 4 16 4 7 25 2.169 1.006 3 17 12 10 40 2.574 0.971 3 18 4 1 24 2.591 0.838 0 19 3 3 12 2.621 0.91 3 20 7 5 12 2.312 1.085 5 21 2 2 8 2.215 0.947 3 22 1 5 24 2.296 0.975 2 23 0 5 12 2.006 1.125 5 24 4 1 18 2.282 0.855 1 25 8 3 30 2.328 1.035 1 26 7 6 28 2.155 0.953 2 27 6 6 30 2.267 1.032 2 LENGTH_DATA Number_of_lens 1 Number_of_dpar 4 # Len Type MDpar MDprp NDpar Angle with C-axis 1 14.095 T 2.294 0.975 4 58.569 38 MICROPROBE DATA MASS PERCENT Grain No. P2O5 La2O3 F SiO2 Cl CaO Ce2O3 Na2O SrO FeO MnO Total 1 41.484 0.033 3.355 0.001 0.005 56.076 0.097 0.025 0 0.049 0.016 99.727 2 41.574 0.045 3.094 0.041 0.156 56.297 0.131 0.006 0 0.474 0.087 100.567 3 41.071 0.000 3.919 0.000 0.004 54.880 0.073 0.004 0 0.221 0.075 98.596 4 41.586 0.073 3.512 0.000 0.010 54.533 0.128 0.009 0 0.161 0.121 98.652 6 41.155 0.059 3.735 0.032 0.008 54.979 0.186 0.018 0 0.195 0.081 98.873 7 40.822 0.106 3.575 0.000 0.011 55.198 0.086 0.018 0 0.218 0.049 98.576 8 40.843 0.000 3.678 0.062 0.017 55.109 0.199 0.000 0 0.247 0.033 98.635 9 41.419 0.027 3.965 0.000 0.003 55.425 0.060 0.026 0 0.070 0.020 99.345 10 40.767 0.086 3.341 0.021 0.053 54.757 0.139 0.011 0 0.205 0.068 98.029 11 41.756 0.000 3.725 0.062 0.018 55.160 0.194 0.001 0 0.299 0.062 99.705 12 42.395 0.047 3.709 0.035 0.014 54.816 0.076 0.009 0 0.095 0.046 99.677 13 41.534 0.086 3.676 0.047 0.011 54.347 0.031 0.012 0 0.193 0.088 98.475 14 41.838 0.000 3.958 0.022 0.003 54.665 0.097 0.004 0 0.038 0.007 98.964 15 41.232 0.100 3.497 0.040 0.014 55.289 0.129 0.038 0 0.159 0.046 99.069 16 41.557 0.002 4.684 0.012 0.014 55.148 0.089 0.001 0 0.143 0.028 99.703 17 41.726 0.065 3.516 0.018 0.009 54.601 0.115 0.000 0 0.249 0.083 98.900 18 41.536 0.000 3.669 0.032 0.047 54.153 0.184 0.033 0 0.399 0.119 98.616 19 42.425 0.120 3.244 0.000 0.008 55.849 0.074 0.034 0 0.075 0.042 100.503 20 41.699 0.110 3.717 0.044 0.028 54.661 0.094 0.009 0 0.213 0.064 99.068 21 41.963 0.084 3.204 0.000 0.012 54.109 0.123 0.002 0 0.208 0.063 98.416 22 41.201 0.000 3.581 0.054 0.030 53.780 0.142 0.017 0 0.331 0.052 97.673 23 41.708 0.107 2.752 0.033 0.073 55.096 0.129 0.008 0 0.364 0.044 99.139 24 41.684 0.000 3.088 0.037 0.006 55.564 0.123 0.016 0 0.123 0.023 99.363 25 41.981 0.000 3.966 0.000 0.004 55.512 0.108 0.010 0 0.093 0.041 100.044 26 41.637 0.032 3.227 0.026 0.009 54.068 0.087 0.006 0 0.275 0.033 98.039 27 42.030 0.087 4.417 0.024 0.008 55.236 0.081 0.022 0 0.057 0.050 100.150 29 41.507 0.040 4.056 0.000 0.004 53.474 0.052 0.005 0 0.089 0.000 97.518 (2) CATION TOTAL Grain No. P La F Si Cl Ca Ce Na Sr Fe Mn Total 1 0.2372 0.0001 0.0669 0 0 0.4059 0.0002 0.0003 0 0.0003 0.0001 0.711 2 0.2363 0.0001 0.0615 0.0003 0.0017 0.4049 0.0003 0.0001 0 0.0027 0.0005 0.7085 3 0.2381 0 0.0782 0 0 0.4027 0.0002 0.0001 0 0.0013 0.0004 0.721 4 0.2398 0.0002 0.0703 0 0.0001 0.398 0.0003 0.0001 0 0.0009 0.0007 0.7104 6 0.2379 0.0001 0.0746 0.0002 0.0001 0.4022 0.0005 0.0002 0 0.0011 0.0005 0.7175 7 0.2369 0.0003 0.0719 0 0.0001 0.4054 0.0002 0.0002 0 0.0012 0.0003 0.7165 8 0.2369 0 0.0738 0.0004 0.0002 0.4045 0.0005 0 0 0.0014 0.0002 0.718 9 0.2382 0.0001 0.0785 0 0 0.4034 0.0001 0.0003 0 0.0004 0.0001 0.7212 10 0.2374 0.0002 0.0677 0.0001 0.0006 0.4036 0.0004 0.0001 0 0.0012 0.0004 0.7118 11 0.2388 0 0.0737 0.0004 0.0002 0.3993 0.0005 0 0 0.0017 0.0004 0.7151 12 0.2413 0.0001 0.0731 0.0002 0.0001 0.3949 0.0002 0.0001 0 0.0005 0.0003 0.7109 13 0.24 0.0002 0.0735 0.0003 0.0001 0.3973 0.0001 0.0002 0 0.0011 0.0005 0.7133 14 0.2405 0 0.0783 0.0001 0 0.3977 0.0002 0.0001 0 0.0002 0 0.7171 15 0.2376 0.0003 0.07 0.0003 0.0001 0.4032 0.0003 0.0005 0 0.0009 0.0003 0.7135 16 0.2389 0 0.0914 0.0001 0.0001 0.4012 0.0002 0 0 0.0008 0.0002 0.7329 17 0.2399 0.0002 0.0702 0.0001 0.0001 0.3973 0.0003 0 0 0.0014 0.0005 0.71 18 0.2399 0 0.0733 0.0002 0.0005 0.3959 0.0005 0.0004 0 0.0023 0.0007 0.7138 19 0.2397 0.0003 0.0641 0 0.0001 0.3993 0.0002 0.0004 0 0.0004 0.0002 0.7048 20 0.2397 0.0003 0.0739 0.0003 0.0003 0.3977 0.0002 0.0001 0 0.0012 0.0004 0.7142 21 0.2415 0.0002 0.0644 0 0.0001 0.394 0.0003 0 0 0.0012 0.0004 0.7021 22 0.24 0 0.0723 0.0004 0.0003 0.3964 0.0004 0.0002 0 0.0019 0.0003 0.7122 23 0.2388 0.0003 0.0555 0.0002 0.0008 0.3992 0.0003 0.0001 0 0.0021 0.0003 0.6977 24 0.2384 0 0.0619 0.0003 0.0001 0.4021 0.0003 0.0002 0 0.0007 0.0001 0.7041 25 0.2393 0 0.0779 0 0 0.4005 0.0003 0.0001 0 0.0005 0.0002 0.7189 26 0.2407 0.0001 0.0651 0.0002 0.0001 0.3956 0.0002 0.0001 0 0.0016 0.0002 0.7039 27 0.2398 0.0002 0.086 0.0002 0.0001 0.3988 0.0002 0.0003 0 0.0003 0.0003 0.7262 29 0.2419 0.0001 0.0811 0 0 0.3944 0.0001 0.0001 0 0.0005 0 0.7183 39 SAMPLE EOC-14-005 Age: Archean Rock type: Greywacke Coordinates Easting -76.0866 Northing 52.69931 Elevation 220 GRAIN_DATA Number of dated grains 12 Sample lab # Grain# Ns Ni # square MDpar MDprp U (ppm) Age NP3 2 24 22 40 N/A N/A 68 237.3 3 89 64 50 N/A N/A 158 301 7 42 42 30 N/A N/A 173 217.9 9 32 17 25 N/A N/A 84 404.2 10 35 20 40 N/A N/A 62 376.6 12 44 41 100 N/A N/A 51 233.6 NP19-1 4 66 38 100 2.32 0.70 46 373.9 5 42 26 60 2.33 0.62 52 348.4 6 89 58 100 2.28 0.69 69 331.4 8 74 47 60 2.22 0.67 94 339.8 NP19-2 1 114 65 100 2.49 0.78 78 377.4 2 30 16 20 2.54 0.85 96 402.7 LENGTH_DATA Number_of_lens 6 # Len Type MDpar MDprp NDpar Angle with C-axis NP19-1 (grain#) 8 1 11.666 T 2.426 0.718 4 40.386 8 2 14.061 T 2.426 0.718 4 43.578 8 3 12.538 T 2.426 0.718 4 87.143 8 4 10.93 T 2.426 0.718 4 51.084 NP19-2 5 1 11.302 T 2.29 0.672 4 75.641 5 2 12.74 T 2.29 0.672 4 59.297 40 MICROPROBE DATA Mass percent Grain# P2O5 La2O3 F SiO2 Cl CaO Na2O SrO FeO MnO Total NP3 2 40.135 0.000 2.889 0 0.017 54.142 0.003 0 0.02 0.04 96.04 3 40.444 0.105 3.467 0 0.019 54.061 0.000 0 0.00 0.03 96.75 7 40.636 0.000 3.423 0 0.013 55.062 0.012 0 0.02 0.00 97.77 9 40.113 0.013 2.656 0 0.011 53.963 0.002 0 0.03 0.04 95.75 10 39.673 0.004 3.002 0 0.011 54.765 0.000 0 0.06 0.00 96.29 12 39.918 0.086 3.176 0 0.006 54.791 0.011 0 0.00 0.01 96.72 NP19-1 4 40.429 0.088 3.801 0 0.019 54.679 0.009 0 0.05 0.02 97.52 5 40.562 0.000 3.694 0 0.010 55.020 0.011 0 0.03 0.02 97.79 6 40.715 0.000 3.427 0 0.013 54.917 0.010 0 0.03 0.07 97.76 8 40.516 0.011 3.229 0 0.014 54.735 0.022 0 0.03 0.06 97.25 NP19-2 1 40.277 0.000 3.318 0 0.008 55.103 0.017 0 0.00 0.03 97.35 2 39.729 0.009 3.597 0 0.014 54.088 0.022 0 0.03 0.03 96.07 Cation total Grain# P La F Si Cl Ca Ce Na Sr Fe Mn Total NP3 2 0.2376 0 0.06 0 0.0002 0.4056 0.0001 0 0 0.0001 0.0002 0.7039 3 0.2384 0.0003 0.0709 0 0.0002 0.4032 0.0002 0 0 0 0.0002 0.7134 7 0.2372 0 0.0694 0 0.0001 0.4067 0.0001 0.0002 0 0.0001 0 0.7139 9 0.2378 0 0.0555 0 0.0001 0.4049 0.0001 0 0 0.0002 0.0002 0.6988 10 0.2353 0 0.0624 0 0.0001 0.4111 0.0001 0 0 0.0003 0 0.7093 12 0.2359 0.0002 0.0655 0 0.0001 0.4097 0.0001 0.0002 0 0 0.0001 0.7119 NP19-1 4 0.2372 0.0002 0.0769 0 0.0002 0.406 0.0001 0.0001 0 0.0003 0.0001 0.7212 5 0.2371 0 0.0746 0 0.0001 0.407 0 0.0001 0 0.0002 0.0001 0.7193 6 0.2375 0 0.0695 0 0.0001 0.4054 0.0001 0.0001 0 0.0002 0.0004 0.7133 8 0.2374 0 0.066 0 0.0002 0.4058 0 0.0003 0 0.0002 0.0004 0.7103 NP19-2 1 0.2363 0 0.0678 0 0.0001 0.4091 0 0.0002 0 0 0.0001 0.7136 2 0.2366 0 0.0741 0 0.0002 0.4077 0.0002 0.0003 0 0.0002 0.0002 0.7195 41 Age: Archean Rock type: Greywacke Coordinates Easting -76.08679 Northing 52.70057 Elevation -5 GRAIN_DATA Number of dated grains 12 Sample lab # Grain# Ns Ni # square MDpar MDprp U (ppm) AFT age NP15 1 41 21 10 2.08 0.73 256 425.9 2 46 26 10 2.48 0.78 316 387.1 3 29 18 10 2.43 0.81 219 353.5 5 42 19 10 2.39 0.67 231 480.2 7 42 26 10 2.49 0.70 316 354.4 NP20-2 1 49 23 15 2.45 0.68 181 463.4 3 72 48 10 2.71 0.84 566 329.7 11 44 14 10 2.33 0.66 165 672.4 12 35 17 16 2.29 0.72 125 448.3 14 50 33 16 2.36 0.68 243 332.9 16 38 31 16 2.45 0.61 228 270.7 18 39 17 12 2.32 0.78 167 497.6 LENGTH_DATA Number_of_lens 128 # Len Type MDpar MDprp NDpar Angle with C-axis NP15 (grain#) 1 1 11.48 T 2.56 0.86 4 68.49 1 2 8.87 T 2.56 0.86 4 51.65 1 3 13.78 T 2.56 0.86 4 36.70 1 4 13.68 T 2.56 0.86 4 49.00 1 5 14.30 T 2.56 0.86 4 54.68 1 6 14.69 T 2.56 0.86 4 51.98 1 7 14.90 T 2.56 0.86 4 73.22 1 8 10.87 T 2.56 0.86 4 35.64 1 9 9.00 T 2.56 0.86 4 77.01 1 10 11.71 T 2.56 0.86 4 74.89 1 11 10.47 T 2.56 0.86 4 75.26 1 12 13.41 T 2.56 0.86 4 76.45 1 13 11.35 T 2.56 0.86 4 29.75 1 14 13.94 T 2.56 0.86 4 73.61 2 15 13.90 T 2.49 0.69 4 59.22 2 16 9.63 T 2.49 0.69 4 26.07 2 17 10.34 T 2.49 0.69 4 56.51 2 18 12.28 T 2.49 0.69 4 46.46 2 19 12.72 T 2.49 0.69 4 89.17 2 20 13.48 T 2.49 0.69 4 78.76 2 21 14.52 T 2.49 0.69 4 49.56 2 22 13.24 T 2.49 0.69 4 75.81 2 23 12.80 T 2.49 0.69 4 39.41 2 24 9.02 T 2.49 0.69 4 74.91 2 25 13.77 T 2.49 0.69 4 66.42 2 26 13.78 T 2.49 0.69 4 51.71 2 27 12.99 T 2.49 0.69 4 53.66 2 28 13.66 T 2.49 0.69 4 29.33 2 29 14.10 T 2.49 0.69 4 66.09 2 30 13.99 T 2.49 0.69 4 79.26 3 31 6.76 T 2.17 0.72 4 71.63 3 32 10.12 T 2.17 0.72 4 57.65 3 33 12.07 T 2.17 0.72 4 55.53 3 34 10.66 T 2.17 0.72 4 81.67 3 35 11.83 T 2.17 0.72 4 87.53 3 36 10.63 T 2.17 0.72 4 77.35 3 37 13.31 T 2.17 0.72 4 66.70 3 38 12.74 T 2.17 0.72 4 55.18 3 39 11.11 T 2.17 0.72 4 55.94 3 40 12.44 T 2.17 0.72 4 70.37 3 41 12.10 T 2.17 0.72 4 70.51 3 42 11.17 T 2.17 0.72 4 60.38 3 43 10.77 T 2.17 0.72 4 72.60 3 44 15.20 T 2.17 0.72 4 78.46 3 45 14.30 T 2.17 0.72 4 63.69 5 46 13.38 T 2.20 0.57 4 55.21 5 47 10.51 T 2.20 0.57 4 52.99 5 48 12.54 T 2.20 0.57 4 79.46 SAMPLE EUG-15-018A 42 5 49 12.23 T 2.20 0.57 4 85.14 5 50 13.17 T 2.20 0.57 4 78.70 5 51 7.98 T 2.20 0.57 4 63.60 5 52 12.64 T 2.20 0.57 4 63.93 5 53 12.74 T 2.20 0.57 4 48.05 5 54 11.04 T 2.20 0.57 4 44.97 5 55 7.72 T 2.20 0.57 4 70.51 5 56 14.24 T 2.20 0.57 4 61.11 5 57 14.13 T 2.20 0.57 4 82.18 5 58 13.04 T 2.20 0.57 4 65.27 5 59 12.65 T 2.20 0.57 4 77.02 5 60 15.48 T 2.20 0.57 4 53.01 5 61 11.76 T 2.20 0.57 4 54.82 5 62 15.21 T 2.20 0.57 4 72.48 5 63 13.26 T 2.20 0.57 4 75.34 5 64 14.54 T 2.20 0.57 4 48.78 5 65 12.04 T 2.20 0.57 4 66.63 5 66 9.55 T 2.20 0.57 4 88.14 5 67 10.85 T 2.20 0.57 4 82.25 5 68 10.43 T 2.20 0.57 4 71.16 5 69 12.20 T 2.20 0.57 4 45.56 5 70 12.77 T 2.20 0.57 4 69.68 5 71 13.83 T 2.20 0.57 4 61.04 5 72 8.84 T 2.20 0.57 4 71.73 6 73 15.36 T 2.40 0.85 4 75.87 6 74 11.62 T 2.40 0.85 4 50.71 6 75 12.82 T 2.40 0.85 4 85.84 6 76 14.97 T 2.40 0.85 4 84.26 6 77 14.14 T 2.40 0.85 4 39.32 6 78 15.73 T 2.40 0.85 4 29.33 6 79 12.54 T 2.40 0.85 4 53.61 6 80 12.75 T 2.40 0.85 4 62.25 6 81 10.17 T 2.40 0.85 4 71.86 6 82 11.14 T 2.40 0.85 4 71.57 6 83 13.46 T 2.40 0.85 4 75.97 6 84 13.07 T 2.40 0.85 4 58.35 6 85 10.73 T 2.40 0.85 4 47.96 6 86 13.70 T 2.40 0.85 4 70.17 6 87 14.80 T 2.40 0.85 4 75.14 6 88 11.34 T 2.40 0.85 4 82.40 6 89 12.88 T 2.40 0.85 4 69.73 7 90 11.70 T 2.42 0.78 4 56.14 7 91 13.33 T 2.42 0.78 4 63.07 7 92 12.31 T 2.42 0.78 4 72.51 7 93 9.10 T 2.42 0.78 4 83.30 7 94 14.18 T 2.42 0.78 4 81.51 7 95 12.26 T 2.42 0.78 4 77.16 7 96 14.14 T 2.42 0.78 4 79.65 7 97 14.26 T 2.42 0.78 4 63.74 7 98 14.24 T 2.42 0.78 4 59.83 7 99 12.93 T 2.42 0.78 4 49.85 7 100 12.10 T 2.42 0.78 4 78.33 7 101 13.67 T 2.42 0.78 4 80.98 7 102 12.49 T 2.42 0.78 4 76.30 7 103 12.45 T 2.42 0.78 4 78.12 7 104 9.98 T 2.42 0.78 4 76.45 1 1 13.68 T 2.42 0.71 4 42.745 1 2 11.22 T 2.42 0.71 4 62.076 1 3 14.73 T 2.42 0.71 4 75.069 3 4 14.87 T 2.37 0.80 4 77.24 3 5 13.51 T 2.37 0.80 4 88.914 3 6 9.97 T 2.37 0.80 4 56.594 3 7 13.14 T 2.37 0.80 4 68.645 3 8 12.67 T 2.37 0.80 4 59.398 3 9 7.67 T 2.37 0.80 4 66.645 3 10 11.45 T 2.37 0.80 4 51.853 3 11 11.43 T 2.37 0.80 4 37.098 11 12 16.10 T 2.32 0.69 4 46.012 11 13 13.90 T 2.32 0.69 4 66.098 11 14 13.46 T 2.32 0.69 4 84.828 12 15 11.11 T 2.38 0.68 4 73.101 12 16 12.41 T 2.38 0.68 4 58.277 12 17 14.19 T 2.38 0.68 4 41.954 12 18 14.10 T 2.38 0.68 4 89.177 14 19 10.09 T 2.41 0.72 4 38.662 14 20 13.99 T 2.41 0.72 4 79.511 16 21 14.83 T 2.07 0.70 4 50.705 16 22 13.34 T 2.07 0.70 4 83.324 16 23 12.65 T 2.07 0.70 4 65.07 16 24 12.93 T 2.07 0.70 4 64.461 43 MICROPROBE DATA Mass percent P2O5 La2O3 F SiO2 Cl CaO Na2O SrO FeO MnO Total NP15 1 40.808 0.000 3.390 0 0.004 54.458 0.000 0 0.000 0.062 97.365 2 41.020 0.000 3.914 0 0.005 54.349 0.003 0 0.018 0.025 97.725 3 40.496 0.000 3.704 0 0.003 55.035 0.007 0 0.000 0.020 97.762 5 40.909 0.014 3.484 0 0.000 54.288 0.000 0 0.039 0.057 97.361 7 40.649 0.057 3.170 0 0.000 54.539 0.003 0 0.026 0.000 97.159 NP20-2 1 40.504 0.003 3.494 0 0.000 55.051 0.001 0 0.017 0.000 97.628 3 40.183 0.157 3.632 0 0.000 54.687 0.000 0 0.038 0.012 97.249 11 40.966 0.064 3.621 0 0.001 55.481 0.008 0 0.000 0.027 98.706 12 40.814 0.000 3.634 0 0.000 54.931 0.025 0 0.000 0.000 97.906 14 40.616 0.000 3.202 0 0.000 55.053 0.015 0 0.038 0.005 97.686 16 40.753 0.078 3.522 0 0.000 54.960 0.000 0 0.027 0.027 98.037 18 41.177 0.000 3.224 0 0.008 55.198 0.013 0 0.000 0.000 98.351 P La F Si Cl Ca Ce Na Sr Fe Mn Total NP15 1 0.2386 0 0.0689 0 0 0.4029 0.0002 0 0 0 0.0004 0.711 2 0.2393 0 0.0786 0 0 0.4013 0.0001 0 0 0.0001 0.0001 0.7196 3 0.2369 0 0.0749 0 0 0.4074 0.0001 0.0001 0 0 0.0001 0.7196 5 0.2391 0 0.0707 0 0 0.4015 0.0001 0 0 0.0002 0.0003 0.712 7 0.2381 0.0001 0.0648 0 0 0.4042 0.0001 0 0 0.0002 0 0.7075 NP20-2 1 0.2369 0 0.0709 0 0 0.4075 0.0001 0 0 0.0001 0 0.7156 3 0.2366 0.0004 0.074 0 0 0.4074 0.0002 0 0 0.0002 0.0001 0.7189 11 0.2371 0.0002 0.0726 0 0 0.4064 0.0002 0.0001 0 0 0.0002 0.7168 12 0.2378 0 0.0733 0 0 0.4051 0.0001 0.0003 0 0 0 0.7167 14 0.2371 0 0.0652 0 0 0.4066 0.0003 0.0002 0 0.0002 0 0.7096 16 0.2374 0.0002 0.0712 0 0 0.4052 0.0004 0 0 0.0002 0.0002 0.7148 18 0.2382 0 0.0651 0 0.0001 0.4041 0.0002 0.0002 0 0 0 0.7079 44 SAMPLE EUG-14-20C Age: Archean Rock type: Greywackes Coordinates Easting -76.08623 Northing 52.70091 Elevation -162 GRAIN_DATA Number of dated grain 24 Sample lab Grain# Ns Ni # square MDpar MDprp U (ppm) NP2 1 7 8 8 2.946 0.613 124 2 16 10 10 2.643 0.7 124 3 24 12 25 2.248 0.555 60 6 14 15 21 2.383 0.714 89 7 17 9 16 2.369 0.634 70 8 21 13 30 2.426 0.69 54 9 27 12 21 2.184 0.586 71 11 41 20 40 2.183 0.562 62 12 30 22 40 2.404 0.612 68 13 22 15 25 2.352 0.719 75 15 5 8 25 2.233 0.534 40 16 112 73 49 2.196 0.525 185 NP18-1 2 8 5 12 2.173 0.537 50 4 11 11 28 2.103 0.63 48 5 31 13 40 2.177 0.701 39 8 8 7 10 2.163 0.73 85 11 13 10 24 1.943 0.57 50 14 18 7 25 1.939 0.536 34 15 5 8 32 2.029 0.437 30 16 8 12 20 2.371 0.641 73 17 13 18 30 2.033 0.585 73 NP18-2 2 8 6 16 2.401 0.747 45 4 56 29 70 2.569 0.879 50 7 35 23 30 2.27 0.616 93 LENGTH_DATA Number_of_lens 24 45 # Len Type MDpar MDprp NDpar Angle with NP2 (grain#) 6 1 8.636 T 2.222 0.585 4 49.501 6 2 14.301 T 2.222 0.585 4 69.313 6 3 14.817 T 2.222 0.585 4 32.698 6 4 17.842 T 2.222 0.585 4 83.123 7 5 6.885 T 2.213 0.65 4 84.87 8 6 9.7 T 2.37 0.614 4 35.148 8 7 13.181 T 2.37 0.614 4 14.01 9 8 14.087 T 2.263 0.606 4 55.405 9 9 7.535 T 2.263 0.606 4 57.059 9 10 13.779 T 2.263 0.606 4 33.563 12 11 9.593 T 2.329 0.6 4 47.77 12 12 12.133 T 2.329 0.6 4 62.061 13 13 12.341 T 2.316 0.611 4 87.131 13 14 10.991 T 2.316 0.611 4 61.86 16 15 10.119 T 2.361 0.626 4 30.626 16 16 10.764 T 2.361 0.626 4 40.45 16 17 9.84 T 2.361 0.626 4 43.509 16 18 13.062 T 2.361 0.626 4 83.602 16 19 13.616 T 2.361 0.626 4 73.209 16 20 12.797 T 2.361 0.626 4 24.958 16 21 9.487 T 2.361 0.626 4 48.304 16 22 13.463 T 2.361 0.626 4 65.864 NP18-1 2 1 13.014 T 2.231 0.625 4 45.224 4 2 14.126 T 1.968 0.65 4 71.232 46 MICROPROBE DATA Mass percent Grain# P2O5 La2O3 F SiO2 Cl CaO Ce2O3 Na2O SrO FeO MnO Total NP2 1 39.999 0.008 3.596 0 0.000 54.170 0.000 0.059 0 0.049 0.171 96.538 2 40.912 0.079 3.816 0 0.008 54.469 0.071 0.053 0 0.016 0.154 97.969 3 40.511 0.007 3.573 0 0.006 54.531 0.029 0.028 0 0.026 0.128 97.334 6 40.995 0.043 3.678 0 0.005 54.624 0.061 0.007 0 0.000 0.161 98.024 7 40.652 0.000 3.835 0 0.004 54.485 0.000 0.012 0 0.015 0.079 97.466 8 40.858 0.000 3.855 0 0.000 54.765 0.016 0.037 0 0.003 0.135 98.046 9 40.748 0.050 3.939 0 0.000 54.563 0.082 0.038 0 0.072 0.150 97.983 11 40.620 0.000 3.408 0 0.004 54.358 0.108 0.033 0 0.002 0.165 97.262 12 40.594 0.002 3.618 0 0.000 54.672 0.077 0.060 0 0.041 0.162 97.703 13 41.441 0.000 3.624 0 0.004 54.281 0.034 0.058 0 0.000 0.128 98.043 15 40.736 0.000 3.173 0 0.005 54.651 0.048 0.030 0 0.047 0.128 97.481 16 40.675 0.024 3.902 0 0.002 54.388 0.050 0.041 0 0.014 0.112 97.565 NP18-1 2 40.167 0.060 3.905 0 0.002 53.951 0.000 0.045 0 0.024 0.156 96.666 4 40.093 0.018 3.574 0 0.007 54.242 0.005 0.047 0 0.002 0.181 96.662 5 41.044 0.037 3.968 0 0.005 54.426 0.000 0.050 0 0.069 0.131 98.058 8 40.249 0.024 3.870 0 0.000 54.490 0.040 0.037 0 0.019 0.145 97.245 11 40.824 0.000 3.662 0 0.007 54.465 0.040 0.053 0 0.033 0.140 97.680 14 40.707 0.032 3.479 0 0.000 54.139 0.055 0.046 0 0.000 0.163 97.156 15 40.260 0.000 3.943 0 0.004 54.317 0.069 0.020 0 0.029 0.097 97.078 16 40.928 0.000 3.450 0 0.000 54.333 0.050 0.045 0 0.000 0.128 97.481 17 40.325 0.000 3.865 0 0.000 54.462 0.000 0.038 0 0.014 0.094 97.171 NP18-2 2 40.390 0.000 3.726 0 0.000 54.841 0.055 0.031 0 0.085 0.146 97.705 4 40.724 0.000 3.767 0 0.000 54.648 0.069 0.059 0 0.006 0.141 97.828 7 41.142 0.000 3.328 0 0.006 54.793 0.095 0.048 0 0.000 0.157 98.167 Cation total Grain# P La F Si Cl Ca Ce Na Sr Fe Mn Total NP2 1 0.2369 0 0.0737 0 0 0.406 0 8E-04 0 0.0003 0.001 0.7188 2 0.2385 0.0002 0.0767 0 0.0001 0.4018 0.0002 7E-04 0 0.0001 0.0009 0.7192 3 0.2376 0 0.0726 0 0.0001 0.4048 0.0001 4E-04 0 0.0002 0.0008 0.7167 6 0.2385 0.0001 0.074 0 0.0001 0.4023 0.0002 1E-04 0 0 0.0009 0.7163 7 0.2382 0 0.0774 0 0 0.404 0 2E-04 0 0.0001 0.0005 0.7204 8 0.238 0 0.0774 0 0 0.4038 0 5E-04 0 0 0.0008 0.7206 9 0.2379 0.0001 0.0791 0 0 0.4032 0.0002 5E-04 0 0.0004 0.0009 0.7223 11 0.2381 0 0.0694 0 0 0.4032 0.0003 4E-04 0 0 0.001 0.7125 12 0.2374 0 0.0732 0 0 0.4046 0.0002 8E-04 0 0.0002 0.001 0.7174 13 0.2402 0 0.0727 0 0 0.3982 0.0001 8E-04 0 0 0.0007 0.7128 15 0.2379 0 0.0647 0 0.0001 0.4039 0.0001 4E-04 0 0.0003 0.0007 0.7081 16 0.2382 0.0001 0.0786 0 0 0.4031 0.0001 6E-04 0 0.0001 0.0007 0.7216 NP18-1 2 0.2377 0.0002 0.0795 0 0 0.4041 0 6E-04 0 0.0001 0.0009 0.7232 4 0.2371 0 0.0732 0 0.0001 0.4059 0 6E-04 0 0 0.0011 0.7181 5 0.239 0.0001 0.0794 0 0.0001 0.401 0 7E-04 0 0.0004 0.0008 0.7215 8 0.237 0.0001 0.0784 0 0 0.406 0.0001 5E-04 0 0.0001 0.0009 0.7232 11 0.2384 0 0.074 0 0.0001 0.4025 0.0001 7E-04 0 0.0002 0.0008 0.7168 14 0.2387 0.0001 0.0708 0 0 0.4017 0.0001 6E-04 0 0 0.001 0.7131 15 0.2374 0 0.0799 0 0 0.4053 0.0002 3E-04 0 0.0002 0.0006 0.7239 16 0.2389 0 0.07 0 0 0.4014 0.0001 6E-04 0 0 0.0008 0.7118 17 0.2374 0 0.0783 0 0 0.4057 0 5E-04 0 0.0001 0.0006 0.7227 NP18-2 2 0.2366 0 0.0754 0 0 0.4066 0.0001 4E-04 0 0.0005 0.0009 0.7206 4 0.2378 0 0.0759 0 0 0.4039 0.0002 8E-04 0 0 0.0008 0.7194 7 0.2385 0 0.0672 0 0.0001 0.402 0.0002 6E-04 0 0 0.0009 0.7095 47 SAMPLE MKB-12-493 Age: Archean Rock type: banded iron formation Coordinates Easting -96.07229 Northing 65.02244 Elevation 140 (approximative) GRAIN_DATA Number of dated grains 29 Sample lab # Grain# Ns Ni # square MDpar MDprp U (ppm) NP14 2 60 25 100 2.52 0.67 31 4 43 21 100 2.27 0.65 26 5 33 23 100 2.19 0.82 28 6 19 10 50 2.50 0.76 24 8 27 11 50 2.49 0.71 27 11 23 12 60 2.39 0.62 24 14 60 29 100 2.40 0.82 35 15 39 15 100 2.55 0.82 18 16 22 13 60 2.34 0.77 27 17 31 19 100 2.21 0.77 23 18 29 19 100 2.26 0.80 23 20 22 8 50 2.30 0.62 20 21 38 24 100 2.21 0.58 29 NP21-2 2 52 29 100 2.29 0.83 34 3 45 17 70 2.56 0.84 28 4 43 16 80 2.57 1.00 23 5 35 25 70 2.55 1.00 42 11 47 23 100 2.36 0.77 27 12 24 12 60 2.45 0.83 23 14 64 27 100 2.35 0.80 32 15 42 18 100 2.52 0.64 21 17 46 23 100 2.46 0.69 27 21 45 21 90 2.27 0.65 27 24 32 14 50 2.80 0.72 33 27 69 28 100 2.49 0.78 33 28 58 24 100 2.59 0.82 28 30 41 22 100 2.60 0.81 26 31 50 24 100 2.27 0.83 28 32 46 26 100 2.34 0.88 30 48 LENGTH_DATA Number_of_lens 32 # Len Type MDpar MDprpNDpar Angle with C-axis NP14 (grain#) 2 1 12.249 T 2.49 0.767 4 87.581 2 2 13.289 T 2.49 0.767 4 83.368 2 3 11.081 T 2.49 0.767 4 72.85 2 4 11.015 T 2.49 0.767 4 80.734 4 5 13.714 T 2.43 0.736 4 57.974 4 6 9.292 T 2.43 0.736 4 69.474 4 7 9.938 T 2.43 0.736 4 53.641 5 8 10.058 T 2.241 0.604 4 67.852 5 9 11.959 T 2.241 0.604 4 82.933 6 10 11.484 T 2.309 0.848 4 56.668 8 11 11.221 T 2.377 0.746 4 54.272 8 12 15.182 T 2.377 0.746 4 7.21 11 13 14.424 T 2.43 0.754 4 60.085 14 14 14.22 T 2.36 0.67 4 74.512 17 15 11.087 T 2.303 0.699 4 35.965 17 16 13.303 T 2.303 0.699 4 39.212 21 17 10.311 T 2.064 0.611 4 67.276 21 18 12.461 T 2.064 0.611 4 89.077 NP21-2 3 1 11.96 T 2.609 0.796 4 55.473 3 2 10.914 T 2.609 0.796 4 65.298 3 3 14.426 T 2.609 0.796 4 67.851 3 4 10.549 T 2.609 0.796 4 52.742 3 5 15.331 T 2.609 0.796 4 68.196 3 6 13.144 T 2.609 0.796 4 69.743 11 7 12.927 T 2.374 0.711 4 61.884 17 8 10.88 T 2.544 0.888 4 57.721 27 9 13.896 T 2.599 0.863 4 77.38 27 10 13.433 T 2.599 0.863 4 39.166 28 11 10.988 T 2.368 0.874 4 34.115 28 12 11.032 T 2.368 0.874 4 50.546 28 13 12.794 T 2.368 0.874 4 78.364 32 14 14.02 T 2.52 0.761 4 83.337 49 MICROPROBE DATA Mass percent P2O5 La2O3 F SiO2 Cl CaO Ce2O3 Na2O SrO FeO MnO Total NP14 2 40.481 0.000 2.850 0 0.06 54.76 0.05 0.01 0 0.00 0.02 97.02 4 40.899 0.052 2.985 0 0.06 55.65 0.00 0.02 0 0.01 0.01 98.41 5 41.351 0.006 3.395 0 0.07 55.53 0.00 0.01 0 0.06 0.03 99.00 6 41.193 0.036 3.110 0 0.06 55.19 0.03 0.03 0 0.04 0.03 98.39 8 41.677 0.029 3.396 0 0.06 54.96 0.01 0.01 0 0.02 0.04 98.76 11 41.543 0.000 3.073 0 0.06 54.99 0.00 0.03 0 0.01 0.07 98.46 14 41.267 0.000 2.888 0 0.05 54.73 0.03 0.00 0 0.01 0.04 97.79 15 40.944 0.000 3.204 0 0.07 54.91 0.06 0.01 0 0.00 0.01 97.84 16 40.623 0.052 3.583 0 0.08 55.02 0.00 0.02 0 0.03 0.00 97.88 17 41.111 0.000 3.004 0 0.06 55.15 0.00 0.03 0 0.00 0.04 98.12 18 41.302 0.000 2.987 0 0.06 55.36 0.03 0.01 0 0.00 0.04 98.51 20 40.989 0.018 2.658 0 0.04 55.03 0.01 0.01 0 0.01 0.01 97.64 21 41.041 0.043 3.060 0 0.04 54.55 0.02 0.00 0 0.01 0.02 97.49 NP21-2 2 41.057 0.000 2.753 0 0.07 54.78 0.01 0.06 0 0.00 0.04 97.60 3 40.924 0.000 2.760 0 0.04 54.65 0.03 0.00 0 0.00 0.01 97.24 4 41.006 0.000 3.178 0 0.05 55.05 0.04 0.03 0 0.04 0.05 98.09 5 40.646 0.000 3.135 0 0.09 54.96 0.02 0.03 0 0.02 0.00 97.56 11 40.778 0.000 3.340 0 0.06 55.22 0.00 0.01 0 0.05 0.00 98.04 12 41.105 0.098 3.419 0 0.05 54.92 0.07 0.02 0 0.00 0.00 98.23 14 41.470 0.000 3.015 0 0.06 54.94 0.00 0.04 0 0.05 0.03 98.32 15 40.770 0.068 2.870 0 0.04 55.40 0.01 0.02 0 0.03 0.04 98.03 17 40.708 0.029 3.005 0 0.08 54.92 0.00 0.00 0 0.00 0.02 97.48 21 40.952 0.000 3.208 0 0.08 54.92 0.00 0.00 0 0.01 0.04 97.83 24 40.999 0.000 3.006 0 0.07 55.43 0.06 0.02 0 0.01 0.01 98.33 27 41.080 0.079 3.150 0 0.08 54.93 0.12 0.02 0 0.00 0.05 98.16 28 41.126 0.022 3.085 0 0.05 55.58 0.00 0.02 0 0.03 0.05 98.65 30 40.649 0.086 2.773 0 0.05 54.75 0.04 0.01 0 0.00 0.00 97.18 31 41.315 0.061 3.049 0 0.07 55.09 0.03 0.02 0 0.02 0.06 98.42 32 41.529 0.000 2.771 0 0.09 54.52 0.07 0.00 0 0.00 0.05 97.83 P La F Si Cl Ca Ce Na Sr Fe Mn Total NP14 2 0.2373 0 0.0587 0 0.0007 0.4063 0.0001 0.0002 0 0 0.0001 0.7035 4 0.2368 0.0001 0.0606 0 0.0006 0.4076 0 0.0003 0 1E-04 0.0001 0.7063 5 0.238 0 0.068 0 0.0007 0.4044 0 0.0002 0 3E-04 0.0001 0.7117 6 0.2382 0.0001 0.0629 0 0.0007 0.4038 0.0001 0.0004 0 2E-04 0.0002 0.7067 8 0.2397 0.0001 0.068 0 0.0006 0.4001 0 0.0002 0 1E-04 0.0002 0.709 11 0.2394 0 0.062 0 0.0006 0.401 0 0.0004 0 1E-04 0.0004 0.704 14 0.2392 0 0.0588 0 0.0006 0.4015 0.0001 0 0 0 0.0002 0.7005 15 0.2382 0 0.065 0 0.0007 0.4042 0.0002 0.0001 0 0 0.0001 0.7085 16 0.2372 0.0001 0.0724 0 0.0009 0.4066 0 0.0002 0 2E-04 0 0.7176 17 0.2381 0 0.061 0 0.0006 0.4043 0 0.0004 0 0 0.0002 0.7046 18 0.2382 0 0.0604 0 0.0007 0.4041 0.0001 0.0001 0 0 0.0002 0.7039 20 0.2381 0 0.0545 0 0.0004 0.4045 0 0.0001 0 0 0.0001 0.6978 21 0.239 0.0001 0.0624 0 0.0004 0.4021 0.0001 0 0 1E-04 0.0001 0.7044 NP21-2 2 0.2386 0 0.0563 0 0.0008 0.4029 0 0.0007 0 0 0.0002 0.6996 3 0.2386 0 0.0567 0 0.0004 0.4032 0.0001 0 0 0 0.0001 0.6992 4 0.238 0 0.0644 0 0.0005 0.4043 0.0001 0.0004 0 2E-04 0.0003 0.7082 5 0.2374 0 0.064 0 0.0009 0.4062 0 0.0005 0 1E-04 0 0.7092 11 0.2372 0 0.0676 0 0.0007 0.4066 0 0.0001 0 3E-04 0 0.7126 12 0.2384 0.0002 0.0689 0 0.0006 0.4032 0.0002 0.0003 0 0 0 0.7118 14 0.2393 0 0.061 0 0.0007 0.4011 0 0.0005 0 3E-04 0.0002 0.7032 15 0.2368 0.0002 0.0586 0 0.0005 0.4072 0 0.0003 0 2E-04 0.0002 0.704 17 0.2376 0.0001 0.0614 0 0.0009 0.4057 0 0 0 0 0.0001 0.7059 21 0.2382 0 0.0651 0 0.0008 0.4043 0 0 0 0 0.0002 0.7086 24 0.2374 0 0.061 0 0.0008 0.4061 0.0001 0.0003 0 1E-04 0.0001 0.706 27 0.2383 0.0002 0.0638 0 0.0009 0.4032 0.0003 0.0002 0 0 0.0003 0.7072 28 0.2374 0.0001 0.0623 0 0.0006 0.406 0 0.0003 0 1E-04 0.0003 0.7072 30 0.2377 0.0002 0.0571 0 0.0006 0.4052 0.0001 0.0001 0 0 0 0.7011 31 0.2386 0.0002 0.0617 0 0.0008 0.4026 0.0001 0.0003 0 1E-04 0.0003 0.7048 32 0.2402 0 0.0564 0 0.001 0.399 0.0002 0 0 0 0.0003 0.6971 Abstract Introduction The apatite fission-track method AFT dataset Inverse Modeling- Musselwhite Mine Inverse modelling, Roberto mine Meadowbank Mine Raglan Mine Discussion Acknowledgments References Samples Press Quality.joboptions << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Error /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /CMYK /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments true /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA /BGR /CHS /CHT /CZE /DAN /DEU /ESP /ETI /FRA /GRE /HEB /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN /ITA /JPN /KOR /LTH /LVI /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR /POL /PTB /RUM /RUS /SKY /SLV /SUO /SVE /TUR /UKR /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /ConvertToCMYK /DestinationProfileName () /DestinationProfileSelector /DocumentCMYK /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice